Skip to main content

Advertisement

Log in

Computational identification of potential bioactive compounds from Triphala against alcoholic liver injury by targeting alcohol dehydrogenase

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Alcoholic liver injury resulting from excessive alcohol consumption is a significant social concern. Alcohol dehydrogenase (ADH) plays a critical role in the conversion of alcohol to acetaldehyde, leading to tissue damage. The management of alcoholic liver injury encompasses nutritional support and, in severe cases liver transplantation, but potential adverse effects exist, and effective medications are currently unavailable. Natural products with their potential benefits and historical use in traditional medicine emerge as promising alternatives. Triphala, a traditional polyherbal formula demonstrates beneficial effects in addressing diverse health concerns, with a notable impact on treating alcoholic liver damage through enhanced liver metabolism. The present study aims to identify potential active phytocompounds in Triphala targeting ADH to prevent alcoholic liver injury. Screening 119 phytocompounds from the Triphala formulation revealed 62 of them showing binding affinity to the active site of the ADH1B protein. Promising lipid-like molecule from Terminalia bellirica, (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid showed high binding efficiency to a competitive ADH inhibitor, 4-Methylpyrazole. Pharmacokinetic analysis further confirmed the drug-likeness and non-hepatotoxicity of the top-ranked compound. Molecular dynamics simulation and MM–PBSA studies revealed the stability of the docked complexes with minimal fluctuation and consistency of the hydrogen bonds throughout the simulation. Together, computational investigations suggest that (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid from the Triphala formulation holds promise as an ADH inhibitor, suggesting an alternative therapy for alcoholic liver injury.

Graphical abstract

Potential active phytocompounds in Triphala formulation targeting alcohol dehydrogenase to prevent alcoholic liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

ADH:

Alcohol dehydrogenase

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

MD:

Molecular dynamics

MM–PBSA:

Molecular mechanics–Poisson–Boltzmann surface area

PDB:

Protein Data Bank

DS:

Discovery Studio

IMPPAT:

Indian medicinal plants, phytochemistry and therapeutics

CGenFF:

CHARMM general force field

NVT:

Number of particles, volume, and temperature

NPT:

Number of particles, pressure, and temperature

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

References

  1. Osna NA, Donohue TM, Kharbanda KK (2017) Alcoholic liver disease: pathogenesis and current management. Alcohol Res 38:147

    PubMed  PubMed Central  Google Scholar 

  2. World Health Organization, WHO (2022) Alcohol. https://www.who.int/news-room/fact-sheets/detail/alcohol. Accessed 10 March 2024

  3. Yan C, Hu W, Tu J et al (2023) Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med. https://doi.org/10.1186/S12967-023-04166-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang N, Shi H, Yao Q et al (2011) Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori. Genet Mol Biol 34:240. https://doi.org/10.1590/S1415-47572011000200013

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singal AK, Louvet A, Shah VH, Kamath PS (2018) Grand rounds: alcoholic hepatitis. J Hepatol 69:534–543. https://doi.org/10.1016/J.JHEP.2018.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chi YC, Lee SL, Lee YP et al (2018) Modeling of human hepatic and gastrointestinal ethanol metabolism with kinetic-mechanism-based full-rate equations of the component alcohol dehydrogenase isozymes and allozymes. Chem Res Toxicol 31:556–569. https://doi.org/10.1021/ACS.CHEMRESTOX.8B00003

    Article  CAS  PubMed  Google Scholar 

  7. Edenberg HJ, McClintick JN (2018) Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review. Alcohol Clin Exp Res 42:2281–2297. https://doi.org/10.1111/ACER.13904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zakhari S (2006) Overview: how is alcohol metabolized by the body? Alcohol Res Health 29:245

    PubMed  PubMed Central  Google Scholar 

  9. Suganya S, Schneider L, Nandagopal B (2019) Molecular docking studies of potential inhibition of the alcohol dehydrogenase enzyme by phyllanthin, hypophyllanthin and gallic acid. Crit Rev Eukaryot Gene Expr 29:287–294. https://doi.org/10.1615/CRITREVEUKARYOTGENEEXPR.2019025602

    Article  PubMed  Google Scholar 

  10. Liu C, Ding JX, Zhou Y et al (2021) Protective effects of Lonicerae japonicae Flos against acute alcoholic liver injury in rats based on network pharmacology. Zhongguo Zhong Yao Za Zhi 46:4531–4540. https://doi.org/10.19540/J.CNKI.CJCMM.20210624.401

    Article  PubMed  Google Scholar 

  11. Baud FJ, Bismuth C, Garnier R et al (1986) 4-Methylpyrazole may be an alternative to ethanol therapy for ethylene glycol intoxication in man. J Toxicol Clin Toxicol 24:463–483. https://doi.org/10.3109/15563658608995388

    Article  PubMed  Google Scholar 

  12. Burns MJ, Graudins A, Aaron CK et al (1997) Treatment of methanol poisoning with intravenous 4-methylpyrazole. Ann Emerg Med 30:829–832. https://doi.org/10.1016/S0196-0644(97)70060-X

    Article  CAS  PubMed  Google Scholar 

  13. Brent J, McMartin K, Phillips S et al (1999) Fomepizole for the treatment of ethylene glycol poisoning. Methylpyrazole for Toxic Alcohols Study Group. N Engl J Med 340:832–838. https://doi.org/10.1056/NEJM199903183401102

    Article  CAS  PubMed  Google Scholar 

  14. Brent J, McMartin K, Phillips S et al (2001) Fomepizole for the treatment of methanol poisoning. N Engl J Med 344:424–429. https://doi.org/10.1056/NEJM200102083440605

    Article  CAS  PubMed  Google Scholar 

  15. McMartin KE (2010) Antidotes for alcohol and glycol toxicity: translating mechanisms into treatments. Clin Pharmacol Ther 88:400–404. https://doi.org/10.1038/CLPT.2010.157

    Article  CAS  PubMed  Google Scholar 

  16. Kotmire S, Desai A, Chougule N (2024) The advances in polyherbal formulation. J Pharmacogn Phytochem 13:210–221. https://doi.org/10.22271/phyto.2024.v13.i1c.14828

    Article  Google Scholar 

  17. Ali M, Khan T, Fatima K et al (2018) Selected hepatoprotective herbal medicines: evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother Res 32:199–215. https://doi.org/10.1002/PTR.5957

    Article  CAS  PubMed  Google Scholar 

  18. Wei X, Luo C, He Y et al (2021) Hepatoprotective effects of different extracts from Triphala against CCl4-induced acute liver injury in mice. Front Pharmacol. https://doi.org/10.3389/FPHAR.2021.664607

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma R, Jadhav M, Choudhary N et al (2022) Deciphering the impact and mechanism of Trikatu, a spices-based formulation on alcoholic liver disease employing network pharmacology analysis and in vivo validation. Front Nutr. https://doi.org/10.3389/FNUT.2022.1063118

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shah VN, Shah MB, Bhatt PA (2011) Hepatoprotective activity of punarnavashtakkwath, an Ayurvedic formulation, against CCl4-induced hepatotoxicity in rats and on the HepG2 cell line. Pharm Biol 49:408–415. https://doi.org/10.3109/13880209.2010.521162

    Article  CAS  PubMed  Google Scholar 

  21. Ray S, Taraphdar AK, Gupta M (2022) Hepatoprotective activity of Amalakyadi Gana, a polyherbal Ayurvedic formulation in paracetamol-induced hepatotoxicity in mice. J Phytopharmacol 11:255–259. https://doi.org/10.31254/phyto.2022.11405

    Article  CAS  Google Scholar 

  22. Chauhan BL, Mohan AR, Kulkarni RD, Mitra SK (1994) Bioassay for evaluation of the hepatoprotective effect of Liv.52, a polyherbal formulation, on ethanol metabolism in chronic alcohol-exposed rats. Indian J Pharmacol 26(2):117–120

    CAS  Google Scholar 

  23. Achliya GS, Wadodkar SG, Dorle AK (2004) Evaluation of hepatoprotective effect of AmalkadiGhrita against carbon tetrachloride-induced hepatic damage in rats. J Ethnopharmacol 90:229–232. https://doi.org/10.1016/j.jep.2003.09.037

    Article  PubMed  Google Scholar 

  24. Bhattacharyya D, Pandit S, Mukherjee R et al (2003) Hepatoprotective effect of Himoliv, a polyherbal formulation in rats. Indian J Physiol Pharmacol 47:435–440

    CAS  PubMed  Google Scholar 

  25. Rajesh MG, Latha MS (2004) Preliminary evaluation of the antihepatotoxic activity of Kamilari, a polyherbal formulation. J Ethnopharmacol 91:99–104. https://doi.org/10.1016/j.jep.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  26. Babu PR, Bhuvaneswar C, Sandeep G et al (2017) Hepatoprotective role of Ricinus communis leaf extract against d-galactosamine induced acute hepatitis in albino rats. Biomed Pharmacother 88:658–666. https://doi.org/10.1016/J.BIOPHA.2017.01.073

    Article  PubMed  Google Scholar 

  27. Gnanadesigan M, Ravikumar S, Anand M (2017) Hepatoprotective activity of Ceriops decandra (Griff.) Ding Hou mangrove plant against CCl4 induced liver damage. J Taibah Univ Sci 11:450–457. https://doi.org/10.1016/J.JTUSCI.2016.07.004

    Article  Google Scholar 

  28. Pereira C, Barros L, Ferreira IC (2016) Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. J Sci Food Agric 96:1068–1084. https://doi.org/10.1002/JSFA.7446

    Article  CAS  PubMed  Google Scholar 

  29. Dhiman RK, Chawla YK (2005) Herbal medicines for liver diseases. Dig Dis Sci 50:1807–1812. https://doi.org/10.1007/S10620-005-2942-9

    Article  CAS  PubMed  Google Scholar 

  30. Peterson CT, Denniston K, Chopra D (2017) Therapeutic uses of Triphala in Ayurvedic medicine. J Altern Complement Med 23:607–614. https://doi.org/10.1089/ACM.2017.0083

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mukherjee PK, Rai S, Bhattacharyya S, Debnath K (2006) Clinical study of ‘Triphala’—a well known phytomedicine from India. Iran J Pharmacol Ther 5(1):51–54

    Google Scholar 

  32. Sabu MC, Kuttan R (2002) Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol 81:155–160. https://doi.org/10.1016/S0378-8741(02)00034-X

    Article  CAS  PubMed  Google Scholar 

  33. Biradar YS, Jagatap S, Khandelwal KR, Singhania SS (2008) Exploring of antimicrobial activity of TriphalaMashi—an Ayurvedic formulation. Evid Based Complement Altern Med 5:107–113. https://doi.org/10.1093/ECAM/NEM002

    Article  Google Scholar 

  34. Rasool M, Sabina EP (2007) Antiinflammatory effect of the Indian Ayurvedic herbal formulation Triphala on adjuvant-induced arthritis in mice. Phytother Res 21:889–894. https://doi.org/10.1002/PTR.2183

    Article  CAS  PubMed  Google Scholar 

  35. Gupta SK, Kalaiselvan V, Srivastava S et al (2010) Evaluation of anticataract potential of Triphala in selenite-induced cataract: in vitro and in vivo studies. J Ayurveda Integr Med 1:280. https://doi.org/10.4103/0975-9476.74425

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baliga MS (2010) Triphala, Ayurvedic formulation for treating and preventing cancer: a review. J Altern Complement Med 16:1301–1308. https://doi.org/10.1089/ACM.2009.0633

    Article  PubMed  Google Scholar 

  37. Abhinand CS, Athira PA, Soumya SJ, Sudhakaran PR (2020) Multiple targets directed multiple ligands: an in silico and in vitro approach to evaluating the effect of Triphala on angiogenesis. Biomolecules. https://doi.org/10.3390/BIOM10020177

    Article  PubMed  PubMed Central  Google Scholar 

  38. Srikumar R, Jeya Parthasarathy N, Sheela Devi R (2005) Immunomodulatory activity of Triphala on neutrophil functions. Biol Pharm Bull 28:1398–1403. https://doi.org/10.1248/BPB.28.1398

    Article  CAS  PubMed  Google Scholar 

  39. Pfundstein B, El Desouky SK, Hull WE et al (2010) Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellirica, Terminalia chebula and Terminalia horrida): characterization, quantitation and determination of antioxidant capacities. Phytochemistry 71:1132–1148. https://doi.org/10.1016/J.PHYTOCHEM.2010.03.018

    Article  CAS  PubMed  Google Scholar 

  40. Kumar N, Khurana SMP (2018) Phytochemistry and medicinal potential of the Terminalia bellirica Roxb. (Bahera). Indian J Nat Prod Resour 9(2):97–107

    CAS  Google Scholar 

  41. Ur-Rehman H, Yasin KA, Choudhary MA et al (2007) Studies on the chemical constituents of Phyllanthus emblica. Nat Prod Res 21:775–781. https://doi.org/10.1080/14786410601124664

    Article  CAS  Google Scholar 

  42. Pawar V, Lahorkar P, Anantha Narayana DB (2009) Development of a RP-HPLC method for analysis of TriphalaCurna and its applicability to test variations in TriphalaCurna preparations. Indian J Pharm Sci 71:382–386. https://doi.org/10.4103/0250-474X.57286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baliga MS, Meera S, Mathai B et al (2012) Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: a review. Chin J Integr Med 18:946–954. https://doi.org/10.1007/S11655-012-1299-X

    Article  PubMed  Google Scholar 

  44. Sandhya T, Lathika KM, Pandey BN, Mishra KP (2006) Potential of traditional Ayurvedic formulation, Triphala, as a novel anticancer drug. Cancer Lett 231:206–214. https://doi.org/10.1016/J.CANLET.2005.01.035

    Article  CAS  PubMed  Google Scholar 

  45. Hurley TD, Bosron WF, Stone CL, Amzel LM (1994) Structures of three human beta alcohol dehydrogenase variants. Correlations with their functional differences. J Mol Biol 239:415–429. https://doi.org/10.1006/JMBI.1994.1382

    Article  CAS  PubMed  Google Scholar 

  46. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/NAR/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP et al (2018) IMPPAT: a curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci Rep. https://doi.org/10.1038/S41598-018-22631-Z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Duke JA (1992) Database of biologically active phytochemicals and their activity. CRC Press, Boca Raton

    Google Scholar 

  49. Kim S, Chen J, Cheng T et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47:D1102–D1109. https://doi.org/10.1093/NAR/GKY1033

    Article  PubMed  Google Scholar 

  50. Diller DJ, Merz KM (2001) High throughput docking for library design and library prioritization. Proteins 43:113–124. https://doi.org/10.1002/1097-0134(20010501)43:2%3c113::aid-prot1023%3e3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  51. Rao SN, Head MS, Kulkarni A, LaLonde JM (2007) Validation studies of the site-directed docking program LibDock. J Chem Inf Model 47:2159–2171. https://doi.org/10.1021/CI6004299

    Article  CAS  PubMed  Google Scholar 

  52. Liao J, Wang Q, Wu F, Huang Z (2022) In silico methods for identification of potential active sites of therapeutic targets. Molecules 27:7103. https://doi.org/10.3390/molecules27207103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xiong G, Wu Z, Yi J et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:W5–W14. https://doi.org/10.1093/NAR/GKAB255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/JCC.20291

    Article  PubMed  Google Scholar 

  55. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/BIOINFORMATICS/BTT055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217. https://doi.org/10.1002/JCC.540040211

    Article  CAS  Google Scholar 

  57. Huang J, Rauscher S, Nawrocki G et al (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/NMETH.4067

    Article  CAS  PubMed  Google Scholar 

  58. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/JCC.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  60. Sun D, Lakkaraju SK, Jo S, Mackerell AD (2018) Determination of ionic hydration free energies with grand canonical Monte Carlo/molecular dynamics simulations in explicit water. J Chem Theory Comput 14:5290–5302. https://doi.org/10.1021/ACS.JCTC.8B00604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268. https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  62. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076. https://doi.org/10.1080/00268978300102851

    Article  Google Scholar 

  63. Turner PJ (2005) XMGRACE, version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton

    Google Scholar 

  64. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17:6281–6291. https://doi.org/10.1021/ACS.JCTC.1C00645

    Article  PubMed  Google Scholar 

  65. Patil R, Das S, Stanley A et al (2010) Optimized hydrophobic interactions and hydrogen bonding at the target–ligand interface leads the pathways of drug-designing. PLoS ONE 5:e12029. https://doi.org/10.1371/journal.pone.0012029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alamri ZZ (2018) The role of liver in metabolism: an updated review with physiological emphasis. Int J Basic Clin Pharmacol 7:2271. https://doi.org/10.18203/2319-2003.IJBCP20184211

    Article  Google Scholar 

  67. Jaeschke H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26:173–179. https://doi.org/10.1111/J.1440-1746.2010.06592.X

    Article  CAS  PubMed  Google Scholar 

  68. Amin A, Hamza AA (2005) Oxidative stress mediates drug-induced hepatotoxicity in rats: a possible role of DNA fragmentation. Toxicology 208:367–375. https://doi.org/10.1016/J.TOX.2004.11.039

    Article  CAS  PubMed  Google Scholar 

  69. Blomstrand R, Ellin Å, Löf A, Östling-Wintzell H (1980) Biological effects and metabolic interactions after chronic and acute administration of 4-methylpyrazole and ethanol to rats. Arch Biochem Biophys 199:591–605. https://doi.org/10.1016/0003-9861(80)90317-3

    Article  CAS  PubMed  Google Scholar 

  70. Abbas Z, Manoharan AL, Jagadeesan G et al (2021) Evaluation of an edible polyherbal formulation against urinary tract infection pathogens, its antioxidant and anti-inflammatory potential. Biocatal Agric Biotechnol 35:102104. https://doi.org/10.1016/j.bcab.2021.102104

    Article  CAS  Google Scholar 

  71. World Health Organization, WHO (2023) Traditional medicine. https://www.who.int/news-room/questions-and-answers/item/traditional-medicine. Accessed 10 March 2024

  72. Chattopadhyay RR, Bhattacharyya SK (2007) PHCOG REV.: plant review Terminalia chebula: an update. Pharmaacogn Rev 1(1)

  73. Parveen R, Shamsi TN, Singh G et al (2018) Phytochemical analysis and in vitro biochemical characterization of aqueous and methanolic extract of Triphala, a conventional herbal remedy. Biotechnol Rep (Amst) 17:126–136. https://doi.org/10.1016/J.BTRE.2018.02.003

    Article  PubMed  Google Scholar 

  74. Chaphalkar R, Apte KG, Talekar Y et al (2017) Antioxidants of Phyllanthus emblica L. bark extract provide hepatoprotection against ethanol-induced hepatic damage: a comparison with silymarin. Oxid Med Cell Longev. https://doi.org/10.1155/2017/3876040

    Article  PubMed  PubMed Central  Google Scholar 

  75. Choi MK, Kim HG, Han JM et al (2015) Hepatoprotective effect of Terminalia chebula against t-BHP-induced acute liver injury in C57/BL6 mice. Evid Based Complement Altern Med. https://doi.org/10.1155/2015/517350

    Article  Google Scholar 

  76. Jadon A, Bhadauria M, Shukla S (2007) Protective effect of Terminalia bellirica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol 109:214–218. https://doi.org/10.1016/J.JEP.2006.07.033

    Article  CAS  PubMed  Google Scholar 

  77. Kuriakose J, Lal Raisa H, Vysakh A et al (2017) Terminalia bellirica (Gaertn.) Roxb. fruit mitigates CCl4 induced oxidative stress and hepatotoxicity in rats. Biomed Pharmacother 93:327–333. https://doi.org/10.1016/J.BIOPHA.2017.06.080

    Article  CAS  PubMed  Google Scholar 

  78. Jayesh K, Helen LR, Vysakh A et al (2019) Protective role of Terminalia bellirica (Gaertn.) Roxb fruits against CCl4 induced oxidative stress and liver injury in rodent model. Indian J Clin Biochem 34:155–163. https://doi.org/10.1007/S12291-017-0732-8

    Article  CAS  PubMed  Google Scholar 

  79. Lee CY, Peng WH, Cheng HY et al (2006) Hepatoprotective effect of Phyllanthus in Taiwan on acute liver damage induced by carbon tetrachloride. Am J Chin Med (Gard City NY) 34:471–482. https://doi.org/10.1142/S0192415X06004004

    Article  Google Scholar 

  80. Ahmadi-Naji R, Heidarian E, Ghatreh-Samani K (2017) Evaluation of the effects of the hydroalcoholic extract of Terminalia chebula fruits on diazinon-induced liver toxicity and oxidative stress in rats. Avicenna J Phytomed 7:454

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rashed K, Potočnjak I, Giacometti J et al (2014) Terminalia bellirica aerial parts ethyl acetate extract exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. J Funct Foods 8:319–330. https://doi.org/10.1016/j.jff.2014.03.033

    Article  CAS  Google Scholar 

  82. Gupta A, Pandey AK (2020) Aceclofenac-induced hepatotoxicity: an ameliorative effect of Terminalia bellirica fruit and ellagic acid. World J Hepatol 12:949–964. https://doi.org/10.4254/WJH.V12.I11.949

    Article  PubMed  PubMed Central  Google Scholar 

  83. Singh DP, Mani D (2015) Protective effect of TriphalaRasayana against paracetamol-induced hepato-renal toxicity in mice. J Ayurveda Integr Med 6:181–186. https://doi.org/10.4103/0975-9476.146553

    Article  PubMed  PubMed Central  Google Scholar 

  84. Phetkate P, Kummalue T, Rinthong P-O et al (2020) Study of the safety of oral Triphala aqueous extract on healthy volunteers. J Integr Med 18:35–40. https://doi.org/10.1016/J.JOIM.2019.10.002

    Article  PubMed  Google Scholar 

  85. Naveed M, Tehreem S, Mubeen S et al (2016) In silico analysis of non-synonymous-SNPs of STEAP2: to provoke the progression of prostate cancer. Open Life Sci 11:402–416. https://doi.org/10.1515/biol-2016-0054

    Article  Google Scholar 

  86. Saleem A, Afzal M, Naveed M et al (2022) HPLC, FTIR and GC–MS analyses of Thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules 27:8512. https://doi.org/10.3390/molecules27238512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Yenepoya (Deemed to be University) for providing the necessary facility to the Center for Systems Biology and Molecular Medicine (CSBMM) and the Centre for Integrative Omics Data Science (CIODS), to carry out this study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

CSA developed the original hypothesis and the computational workflow. CSA and BB conducted molecular docking, ADMET, dynamics studies, and binding-free energy calculations. BB drafted the initial manuscript. CSA, RR, and TSKP critically evaluated the manuscript to ensure the scientific validity of the study. All authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Chandran S. Abhinand.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 159 KB)

Supplementary file2 (PDF 89 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banjan, B., Raju, R., Keshava Prasad, T.S. et al. Computational identification of potential bioactive compounds from Triphala against alcoholic liver injury by targeting alcohol dehydrogenase. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10879-9

Keywords

Navigation