Skip to main content
Log in

The potential molecular markers of inflammatory response in KOA with AD based on single-cell transcriptome sequencing analysis and identification of ligands by virtual screening

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.

Graphical Abstract

Graphical abstract of the potential molecular markers of inflammatory response in KOA with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gan L, Cookson MR, Petrucelli L, La Spada AR (2018) Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 21(10):1300–1309. https://doi.org/10.1038/s41593-018-0237-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer's Association (2016) Alzheimer's disease facts and figures. Alzheimers Dement 12(4):459–509. https://doi.org/10.1016/j.jalz.2016.03.001

  3. Irwin MR, Vitiello MV (2019) Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol 18(3):296–306. https://doi.org/10.1016/S1474-4422(18)30450-2

    Article  CAS  PubMed  Google Scholar 

  4. Katsnelson A, De Strooper B, Zoghbi HY (2016) Neurodegeneration: from cellular concepts to clinical applications. Sci Transl Med 8(364):318p–364p. https://doi.org/10.1126/scitranslmed.aal2074

    Article  CAS  Google Scholar 

  5. Lespasio MJ, Piuzzi NS, Husni ME, Muschler GF, Guarino A, Mont MA (2017) Knee osteoarthritis: a primer. Perm J 21:16–183. https://doi.org/10.7812/TPP/16-183

    Article  PubMed  PubMed Central  Google Scholar 

  6. Spitaels D, Mamouris P, Vaes B, Smeets M, Luyten F, Hermens R, Vankrunkelsven P (2020) Epidemiology of knee osteoarthritis in general practice: a registry-based study. BMJ Open 10(1):e31734. https://doi.org/10.1136/bmjopen-2019-031734

    Article  Google Scholar 

  7. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, Laslett LL, Jones G, Cicuttini F, Osborne R, Vos T, Buchbinder R, Woolf A, March L (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73(7):1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763

    Article  PubMed  Google Scholar 

  8. Kim JR, Yoo JJ, Kim HA (2018) Therapeutics in osteoarthritis based on an understanding of its molecular pathogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms19030674

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xie J, Wang Y, Lu L, Liu L, Yu X, Pei F (2021) Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev 70:101413. https://doi.org/10.1016/j.arr.2021.101413

    Article  CAS  PubMed  Google Scholar 

  10. Huang SW, Wang WT, Chou LC, Liao CD, Liou TH, Lin HW (2015) Osteoarthritis increases the risk of dementia: a nationwide cohort study in Taiwan. Sci Rep 5:10145. https://doi.org/10.1038/srep10145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Innes KE, Sambamoorthi U (2018) The association of perceived memory loss with osteoarthritis and related joint pain in a large appalachian population. Pain Med 19(7):1340–1356. https://doi.org/10.1093/pm/pnx107

    Article  PubMed  Google Scholar 

  12. Ikram M, Innes K, Sambamoorthi U (2019) Association of osteoarthritis and pain with Alzheimer’s diseases and related dementias among older adults in the United States. Osteoart Cartil 27(10):1470–1480. https://doi.org/10.1016/j.joca.2019.05.021

    Article  CAS  Google Scholar 

  13. Kyrkanides S, Tallents RH, Miller JN, Olschowka ME, Johnson R, Yang M, Olschowka JA, Brouxhon SM, O’Banion MK (2011) Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in mice. J Neuroinflammation 8:112. https://doi.org/10.1186/1742-2094-8-112

    Article  PubMed  PubMed Central  Google Scholar 

  14. Culibrk RA, Hahn MS (2020) The role of chronic inflammatory bone and joint disorders in the pathogenesis and progression of Alzheimer’s disease. Front Aging Neurosci 12:583884. https://doi.org/10.3389/fnagi.2020.583884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, Wen L, Li L, Xu Y, Wang Y, Tang F (2019) Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis 78(1):100–110. https://doi.org/10.1136/annrheumdis-2017-212863

    Article  CAS  PubMed  Google Scholar 

  17. Innes KE, Sambamoorthi U (2020) The association of osteoarthritis and related pain burden to incident alzheimer’s disease and related dementias: a retrospective cohort study of U.S. medicare beneficiaries. J Alzheimers Dis. https://doi.org/10.3233/JAD-191311

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hasegawa M, Hirata H, Sudo A, Kato K, Kawase D, Kinoshita N, Yoshida T, Uchida A (2004) Tenascin-C concentration in synovial fluid correlates with radiographic progression of knee osteoarthritis. J Rheumatol 31(10):2021–2026

    CAS  PubMed  Google Scholar 

  19. Hasegawa M, Yoshida T, Sudo A (2020) Tenascin-C in osteoarthritis and rheumatoid arthritis. Front Immunol 11:577015. https://doi.org/10.3389/fimmu.2020.577015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel L, Sun W, Glasson SS, Morris EA, Flannery CR, Chockalingam PS (2011) Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet Disord 12:164. https://doi.org/10.1186/1471-2474-12-164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Dong C, Li N, Ma Q, Yun Z, Cai C, An M, Ma B (2018) Modulation of TGF-β activity by latent TGF-β-binding protein 1 in human osteoarthritis fibroblast-like synoviocytes. Mol Med Rep 17(1):1893–1900. https://doi.org/10.3892/mmr.2017.8086

    Article  CAS  PubMed  Google Scholar 

  22. Antunes BP, Vainieri ML, Alini M, Monsonego-Ornan E, Grad S, Yayon A (2020) Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Acta Biomater 105:170–179. https://doi.org/10.1016/j.actbio.2020.01.032

    Article  CAS  PubMed  Google Scholar 

  23. Yao X, Zhang J, Jing X, Ye Y, Guo J, Sun K, Guo F (2019) Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res 139:314–324. https://doi.org/10.1016/j.phrs.2018.09.026

    Article  CAS  PubMed  Google Scholar 

  24. Ellsworth JL, Berry J, Bukowski T, Claus J, Feldhaus A, Holderman S, Holdren MS, Lum KD, Moore EE, Raymond F, Ren H, Shea P, Sprecher C, Storey H, Thompson DL, Waggie K, Yao L, Fernandes RJ, Eyre DR, Hughes SD (2002) Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoart Cartil 10(4):308–320. https://doi.org/10.1053/joca.2002.0514

    Article  CAS  Google Scholar 

  25. Jiang P, Dou X, Li S, Jia Q, Ling P, Liu H, Han Q, Sun S (2021) MiR-590-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting FGF18 in osteoarthritis. Am J Transl Res 13(8):8728–8741

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarkin CE, Allen S, Kuiper NJ, Wheeler BT, Wheeler-Jones CP, Pitsillides AA (2011) Regulation of UDP-glucose dehydrogenase is sufficient to modulate hyaluronan production and release, control sulfated GAG synthesis, and promote chondrogenesis. J Cell Physiol 226(3):749–761. https://doi.org/10.1002/jcp.22393

    Article  CAS  PubMed  Google Scholar 

  27. Wen Y, Li J, Wang L, Tie K, Magdalou J, Chen L, Wang H (2014) UDP-glucose dehydrogenase modulates proteoglycan synthesis in articular chondrocytes: its possible involvement and regulation in osteoarthritis. Arthritis Res Ther 16(6):484. https://doi.org/10.1186/s13075-014-0484-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alvarez-Garcia O, Olmer M, Akagi R, Akasaki Y, Fisch KM, Shen T, Su AI, Lotz MK (2016) Suppression of REDD1 in osteoarthritis cartilage, a novel mechanism for dysregulated mTOR signaling and defective autophagy. Osteoart Cartil 24(9):1639–1647. https://doi.org/10.1016/j.joca.2016.04.015

    Article  CAS  Google Scholar 

  29. Qin Y, Li J, Zhou Y, Yin C, Li Y, Chen M, Du Y, Li T, Yan J (2021) Apolipoprotein d as a potential biomarker and construction of a transcriptional Regulatory-Immune network associated with osteoarthritis by weighted gene coexpression network analysis. Cartilage. https://doi.org/10.1177/19476035211053824

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park S, Bello A, Arai Y, Ahn J, Kim D, Cha KY, Baek I, Park H, Lee SH (2021) Functional duality of chondrocyte hypertrophy and biomedical application trends in osteoarthritis. Pharmaceutics. https://doi.org/10.3390/pharmaceutics13081139

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rim YA, Nam Y, Ju JH (2020) The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci. https://doi.org/10.3390/ijms21072358

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis an introduction: cell biology of osteoarthritis. Arthritis Res 3(2):107–113. https://doi.org/10.1186/ar148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akkiraju H, Nohe A (2015) Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol 3(4):177–192. https://doi.org/10.3390/jdb3040177

    Article  CAS  PubMed  Google Scholar 

  34. Olex AL, Turkett WH, Fetrow JS, Loeser RF (2014) Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis. Gene 542(1):38–45. https://doi.org/10.1016/j.gene.2014.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He P, Zhang Z, Liao W, Xu D, Fu M, Kang Y (2016) Screening of gene signatures for rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Mol Med Rep 14(2):1587–1593. https://doi.org/10.3892/mmr.2016.5423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perrone L, Valente M (2021) The emerging role of metabolism in brain-heart axis: new challenge for the therapy and prevention of alzheimer disease. May thioredoxin interacting protein (TXNIP) play a role? Biomolecules. https://doi.org/10.3390/biom11111652

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoogmartens J, Hens E, Engelborghs S, De Deyn PP, van der Zee J, Van Broeckhoven C, Cacace R (2021) Investigation of the role of matrix metalloproteinases in the genetic etiology of Alzheimer’s disease. Neurobiol Aging 104:101–105. https://doi.org/10.1016/j.neurobiolaging.2021.03.011

    Article  CAS  Google Scholar 

  38. Wang XX, Tan MS, Yu JT, Tan L (2014) Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. Biomed Res Int 2014:908636. https://doi.org/10.1155/2014/908636

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen J, Zhang J, Li J, Qin R, Lu N, Goltzman D, Miao D, Yang R (2023) 1,25-Dihydroxyvitamin D deficiency accelerates aging-related osteoarthritis via downregulation of Sirt1 in mice. Int J Biol Sci 19(2):610–624. https://doi.org/10.7150/ijbs.78785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baracaldo-Santamaria D, Avendano-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, Gonzalez-Reyes RE, Nava-Mesa MO (2023) Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms24109067

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim J, Lim J, Yoo ID, Park S, Moon JS (2023) TXNIP contributes to induction of pro-inflammatory phenotype and caspase-3 activation in astrocytes during Alzheimer’s diseases. Redox Biol 63:102735. https://doi.org/10.1016/j.redox.2023.102735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ding L, Liao T, Yang N, Wei Y, Xing R, Wu P, Li X, Mao J, Wang P (2023) Chrysin ameliorates synovitis and fibrosis of osteoarthritic fibroblast-like synoviocytes in rats through PERK/TXNIP/NLRP3 signaling. Front Pharmacol 14:1170243. https://doi.org/10.3389/fphar.2023.1170243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported by Basic and Applied Basic Research Project of Guangdong Province (2023A1515012615) and Province-Enterprise Joint Fund General Project of Guangdong Province (2022A1515220157) to Wengang Liu.

Author information

Authors and Affiliations

Authors

Contributions

Yufeng Wu, Weijian Chen, and Wengang Liu were responsible for the design and implementation of the study presented. Weijian Chen, Junde Jian, and Weinian Liu were responsible for the inclusions and literature review. Yufeng Wu and Weijian Chen prepared the initial draft of the manuscript. Haibin Wang, Dawei Gao, and Wengang Liu gave critical feedback. All authors have read and approved the final manuscript to be submitted.

Corresponding author

Correspondence to Wengang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, W., Jian, J. et al. The potential molecular markers of inflammatory response in KOA with AD based on single-cell transcriptome sequencing analysis and identification of ligands by virtual screening. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10854-4

Keywords

Navigation