Skip to main content
Log in

Design, synthesis and systemic acquired resistance of 2-benzothiadiazolylquinoline-4-carboxamides by COI1 based virtual screening

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Coronatine-insensitive 1 (COI1) has been identified as a target receptor of plant elicitor coronatine (COR). To discover novel plant elicitor leads, most of the potential molecules among 129 compounds discovered from the ZINC database by docking based virtual screening targeting COI1 were quinoline amides. On this lead basis, 2-benzothiadiazolylquinoline-4-carboxamides were rationally designed and synthesized for bioassay. All target compounds did not show significantly in vitro antifungal activity, compounds 4d, 4e and 4o displayed good in vivo systemic acquired resistance activity for Arabidopsis thaliana against Hyaloperonospora arabidopsidis isolate Noco2 with over 80% of inhibitory rate at the concentration of 50 μM. These results indicate that 2-benzothiadiazolylquinoline-4-carboxamides are promising plant elicitor leads for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lamberth C, Jeanmart S, Luksch T, Plant A (2013) Current challenges and trends in the discovery of agrochemicals. Science 341(6147):742–746. https://doi.org/10.1126/science.1237227

    Article  CAS  PubMed  Google Scholar 

  2. Chaulagain B, Raid RN, Rott P (2019) Timing and frequency of fungicide applications for the management of sugarcane brown rust. Crop Prot 124:104826. https://doi.org/10.1016/j.cropro.2019.05.020

    Article  CAS  Google Scholar 

  3. Gao W, Zhang J, Zhang Y, Huang Y, Wang C, Liang Q, Yu Z, Fan R, Tang L, Fan Z (2023) CoMFA directed molecular design for significantly improving fungicidal activity of novel [1,2,4]-triazolo-[3,4-b][1,3,4]-thiadizoles. J Agric Food Chem 71(39):14125–14136. https://doi.org/10.1021/acs.jafc.3c02444

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto A (2012) Problems of the insecticide resistance management for sustained insect pest control. J Pesti Sci 37(4):392–398. https://doi.org/10.1584/jpestics.W12-20

    Article  CAS  Google Scholar 

  5. Shi Q, Ji Y, Shi Y, Zhao Z, Zhu W, Xu Y, Li B, Qian X (2021) Floro-pyrazolo[3,4-d]pyrimidine derivative as a novel plant activator induces two-pathway immune system. Phytochemistry 184:112657. https://doi.org/10.1016/j.phytochem.2021.112657

    Article  CAS  PubMed  Google Scholar 

  6. Fan ZJ, Liu XF, Liu FL, Bao LL, Zhang YG (2005) Progress of researches on induced resistance of plant activator. Acta Phytophyl Sin 32(1):87–92. https://doi.org/10.13802/j.cnki.zwbhxb.2005.01.018

    Article  CAS  Google Scholar 

  7. Yang D, Qi X, Kalinina TA, Glukhareva TV, Tang L, Li Z, Fan Z (2022) Synthesis of novel N-(2-phenyl-3-pyridyl) thiadiazole/isothiazole carboxamide analogs as potent plant elicitors. Pest Manag Sci 78(3):1138–1145. https://doi.org/10.1002/ps.6728

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Xu L, Ma H, Su Y, Zhang Q, Zhao Y, Wang M (2022) Design, synthesis, and fungicidal activity of novel plant elicitors based on a diversity-oriented synthesis strategy. J Agric Food Chem 70(42):13486–13498. https://doi.org/10.1021/acs.jafc.2c04013

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Yang X, Zheng X, Bai M, Hu D (2020) Review on structures of pesticide targets. Int J Mol Sci 21(19):7144. https://doi.org/10.3390/ijms21197144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng ZT, Hou YP, Cai YQ, Zhang Y, Li YJ, Zhou MG (2015) Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum. Sci Rep 5:8248. https://doi.org/10.1038/srep08248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang ZB, Gao S, Hu W, Sheng BR, Shi J, Ye F, Fu Y (2023) Design, synthesis and biological activity of novel triketone herbicides containing natural product fragments. Pest Biochem Physiol 194:105493. https://doi.org/10.1016/j.pestbp.2023.105493

    Article  CAS  Google Scholar 

  12. Ding Y, Chen S, Zhang F, Li W, Ge G, Liu T, Yang Q (2023) Chitinase is a potent insecticidal molecular target of camptothecin and its derivatives. J Agric Food Chem 71(4):1845–1851. https://doi.org/10.1021/acs.jafc.2c06607

    Article  CAS  PubMed  Google Scholar 

  13. Qi X, Li K, Chen L, Zhang Y, Zhang N, Gao W, Li Y, Liu X, Fan Z (2022) Plant defense responses to a novel plant elicitor candidate LY5-24-2. Int J Mol Sci 23(10):5348. https://doi.org/10.3390/ijms23105348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao B, Fan S, Fan Z, Wang H, Zhang N, Guo X, Yang D, Wu Q, Yu B, Zhou S (2018) Discovery of pyruvate kinase as a novel target of new fungicide candidate 3-(4-methyl-1, 2, 3-thiadiazolyl)-6-trichloromethyl-[1, 2, 4]-triazolo-[3, 4-b][1, 3, 4]- thiadiazole. J Agric Food Chem 66(46):12439–12452. https://doi.org/10.1021/acs.jafc.8b03797

    Article  CAS  PubMed  Google Scholar 

  15. Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405. https://doi.org/10.1038/nature09430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hao GF, Wang F, Li H, Zhu XL, Yang WC, Huang LS, Wu JW, Berry EA, Yang GF (2012) Computational discovery of picomolar Qo site inhibitors of cytochrome bc1 complex. J Am Chem Soc 134(27):11168–11176. https://doi.org/10.1021/ja3001908

    Article  CAS  PubMed  Google Scholar 

  17. Lai X, Wolkenhauer O, Vera J (2016) Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 44(13):6019–6035. https://doi.org/10.1093/nar/gkw550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Méndez-Álvarez D, Herrera-Mayorga V, Juárez-Saldivar A, Paz-González AD, Ortiz-Pérez E, Bandyopadhyay D, Pérez-Sánchez H, Rivera G (2022) Ligand-based virtual screening, molecular docking, and molecular dynamics of eugenol analogs as potential acetylcholinesterase inhibitors with biological activity against Spodoptera frugiperda. Mol Divers 26:2025–2037. https://doi.org/10.1007/s11030-021-10312-5

    Article  CAS  PubMed  Google Scholar 

  19. Xiong L, Li H, Jiang LN, Ge JM, Yang WC, Zhu XL, Yang GF (2017) Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors. J Agric Food Chem 65(5):1021–1029. https://doi.org/10.1021/acs.jafc.6b05134

    Article  CAS  PubMed  Google Scholar 

  20. Dong Y, Jiang X, Liu T, Ling Y, Yang Q, Zhang L, He X (2018) Structure-based virtual screening, compound synthesis, and bioassay for the design of chitinase inhibitors. J Agric Food Chem 66(13):3351–3357. https://doi.org/10.1021/acs.jafc.8b00017

    Article  CAS  PubMed  Google Scholar 

  21. Feng R, Sun B, Zhang S, Su E, Kovalevsky A, Zhang F, Bennett BC, Shen Q, Wan Q (2023) Discovery of novel Rhizoctonia solani DHFR inhibitors as fungicides using virtual screening. J Agric Food Chem 71(49):19385–19395. https://doi.org/10.1021/acs.jafc.3c05216

    Article  CAS  PubMed  Google Scholar 

  22. Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 139:22–47. https://doi.org/10.1016/j.ejmech.2017.07.061

    Article  CAS  PubMed  Google Scholar 

  23. Ruiz-Mesia L, Ruiz-Mesía W, Reina M, Martínez-Diaz R, de Inés C, Guadaño A, González-Coloma A (2005) Bioactive Cinchona alkaloids from Remijia peruviana. J Agric Food Chem 53(6):1921–1926. https://doi.org/10.1021/jf048880e

    Article  CAS  PubMed  Google Scholar 

  24. Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, Ogawa T, Suzuki H, Shibata D, Jikumaru Y, Hanada A, Kamiya Y, Shirasu K (2012) Novel plant immune-priming compounds identified via highthroughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 24(9):3795–3804. https://doi.org/10.1105/tpc.112.098343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noutoshi Y, Okazaki M, Shirasu K (2012) Imprimatins A and B: novel plant activators targeting salicylic acid metabolism in Arabidopsis thaliana. Plant Signal Behav 7(12):1715–1717. https://doi.org/10.4161/psb.22368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noutoshi Y, Okazaki M, Shirasu K (2012) Isolation and characterization of the plant immune-priming compounds imprimatin b3 and -b4, potentiators of disease resistance in Arabidopsis thaliana. Plant Signal Behav 7(12):1526–1528. https://doi.org/10.4161/psb.22138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG, Meier B, Dincher S, Staub T, Uknes S, Métraux JP, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10(1):61–70. https://doi.org/10.1046/j.1365-313X.1996.10010061.x

    Article  CAS  Google Scholar 

  28. Xu Y, Zhao Z, Qian X, Qian Z, Tian W, Zhong J (2006) Novel, unnatural benzo-1,2,3-thiadiazole-7-carboxylate elicitors of taxoid biosynthesis. J Agric Food Chem 54(23):8793–8798. https://doi.org/10.1021/jf0618574

    Article  CAS  PubMed  Google Scholar 

  29. Lv Y, Li K, Gao W, Hao Z, Wang W, Liu X, Tang L, Fan Z (2022) Design, synthesis and fungicidal activity of 3,4-dichloroisothiazolocoumarin-containing strobilurins. Mol Divers 26:951–961. https://doi.org/10.1007/s11030-021-10207-5

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Li Z, Gao W, Liu X, Lv Y, Hao Z, Tang L, Li K, Zhao B, Fan Z (2021) Design, synthesis, and evaluation of novel isothiazole-purines as a pyruvate kinase-based fungicidal lead compound. J Agric Food Chem 69(32):9461–94712. https://doi.org/10.1021/acs.jafc.1c01651

    Article  CAS  PubMed  Google Scholar 

  31. Trott O, Olson AJ (2010) AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hao GF, Dong QJ, Yang GF (2011) A comparative study on the constitutive properties of marketed pesticides. Mol Inf 30(6–7):614–622. https://doi.org/10.1002/minf.201100020

    Article  CAS  Google Scholar 

  33. Gao W, Li XT, Ren D, Sun SS, Huo JQ, Wang YE, Chen L, Zhang JL (2019) Design and synthesis of N-phenyl phthalimides as potent protoporphyrinogen oxidase inhibitors. Molecules 24(23):4363. https://doi.org/10.3390/molecules24234363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hao Z, Wang W, Yu B, Qi X, Lv Y, Liu X, Chen H, Kalinina TA, Glukhareva TV, Fan Z (2021) Design, synthesis, and evaluation of fungicidal activity of novel pyrazole-containing strobilurin derivatives. Chin J Chem 39(6):1531–1537. https://doi.org/10.1002/cjoc.202000685

    Article  CAS  Google Scholar 

  35. Liu X, Sun Y, Hong S, Ji X, Gao W, Yuan H, Zhang Y, Lei B, Tang L, Fan Z (2024) Synthesis of fungicidal morpholines and isochromenopyridinones via acid-catalyzed intramolecular reactions of isoindolinones. Org Biomol Chem 22(1):120–125. https://doi.org/10.1039/D3OB01717F

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Key Research & Development Program of China (2022YFD1700400 and 2022YFD1700402) and the Frontiers Science Center for New Organic Matter, Nankai University (no. 63181206).

Author information

Authors and Affiliations

Authors

Contributions

X. L., H. Y.(Hongwei Yang) and W. G. finished Docking Based Virtual Screening (DBVS); X. L., Y. S. and Y. H.designed the targrt compounds based molecular docking; X. L., Y. S. and S. H. synthesized the target compounds; X. L., H. Y.(Hongwei Yang), S. H.and H. Y.(Haolin Yuan) finished bioactivity tests; X. L., L. T. and Z. F. wrote the main manuscript; L. T. and Z. F. provided project administration, supervision, and funding acquisition, as well as contributing to writing and reviewing the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Liangfu Tang or Zhijin Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9839 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, H., Sun, Y. et al. Design, synthesis and systemic acquired resistance of 2-benzothiadiazolylquinoline-4-carboxamides by COI1 based virtual screening. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10849-1

Keywords

Navigation