Skip to main content
Log in

Design, synthesis and biological evaluation of 5H-[1,2,4]triazino[5,6-b]indole derivatives bearing a pyridinocycloalkyl moiety as iron chelators

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The avidity of cancer cells for iron highlights the potential for iron chelators to be used in cancer therapy. Herein, we designed and synthesized a novel series of 5H-[1,2,4]triazino[5,6-b]indole derivatives bearing a pyridinocycloalkyl moiety using a ring-fusion strategy based on the structure of an iron chelator, VLX600. The antiproliferative activity evaluation against cancer cells and normal cells led to the identification of compound 3k, which displayed the strongest antiproliferative activity in vitro against A549, MCF-7, Hela and HepG-2 with IC50 values of 0.59, 0.86, 1.31 and 0.92 μM, respectively, and had lower cytotoxicity against HEK293 than VLX600. Further investigations revealed that unlike VLX600, compound 3k selectively bound to ferrous ions, but not to ferric ions, and addition of Fe2+ abolished the cytotoxicity of 3k. Flow cytometry assays demonstrated that 3k arrested the cell cycle at the G1 phase and induced significant apoptosis in A549 cells in dose and time-dependent manners, corresponding to JC-1 staining assay results. Western blot analysis of Bcl-2, Bax and cleaved caspase-3 proteins further provided evidences that induction of apoptosis by 3k in A549 cells might be at least via the mitochondria pathway. These above results highlight that 3k is a valuable lead compound that deserves further investigation as an iron chelator for the treatment of cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo Q, Li L, Hou S, Yuan Z, Li C, Zhang W et al (2021) The role of iron in cancer progression. Front Oncol 11:778492. https://doi.org/10.3389/fonc.2021.778492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torti SV, Torti FM (2020) Iron: the cancer connection. Mol Aspects Med 75:100860. https://doi.org/10.1016/j.mam.2020.100860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM (2018) Iron and cancer. Annu Rev Nutr 38(1):97–125. https://doi.org/10.1146/annurev-nutr-082117-051732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN (2021) Role of iron in the molecular pathogenesis of diseases and therapeutic opportunities. ACS Chem Biol 16(6):945–972. https://doi.org/10.1021/acschembio.1c00122

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J et al (2022) Ferroptosis in cancer and cancer immunotherapy. Cancer Commun 42(2):88–116. https://doi.org/10.1002/cac2.12250

    Article  Google Scholar 

  6. Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M (2018) Iron in the tumor microenvironment—connecting the dots. Front Oncol 8:549. https://doi.org/10.3389/fonc.2018.00549

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ibrahim O, O’Sullivan J (2020) Iron chelators in cancer therapy. Biometals 33(4–5):201–215. https://doi.org/10.1007/s10534-020-00243-3

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Kang R, Kroemer G, Tang D (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18(5):280–296. https://doi.org/10.1038/s41571-020-00462-0

    Article  CAS  PubMed  Google Scholar 

  9. Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C et al (2020) Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 11(48):12888–12917. https://doi.org/10.1039/d0sc04082g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim JL, Lee DH, Na YJ, Kim BR, Jeong YA, Lee SI et al (2016) Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol 37(7):9709–9719. https://doi.org/10.1007/s13277-016-4878-4

    Article  CAS  PubMed  Google Scholar 

  11. Harima H, Kaino S, Takami T, Shinoda S, Matsumoto T, Fujisawa K et al (2016) Deferasirox, a novel oral iron chelator, shows antiproliferative activity against pancreatic cancer in vitro and in vivo. BMC Cancer 16(1):702. https://doi.org/10.1186/s12885-016-2744-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xue Y, Zhang G, Zhou S, Wang S, Lv H, Zhou L et al (2021) Iron chelator induces apoptosis in osteosarcoma cells by disrupting intracellular iron homeostasis and activating the MAPK pathway. Int J Mol Sci 22(13):7168. https://doi.org/10.3390/ijms22137168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lan L, Wei W, Zheng Y, Niu L, Chen X, Huang D et al (2018) Deferoxamine suppresses esophageal squamous cell carcinoma cell growth via ERK1/2 mediated mitochondrial dysfunction. Cancer Lett 432:132–143. https://doi.org/10.1016/j.canlet.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  14. Noulsri E, Richardson DR, Lerdwana S, Fucharoen S, Yamagishi T, Kalinowski DS et al (2009) Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells. Am J Hematol 84(3):170–176. https://doi.org/10.1002/ajh.21350

    Article  CAS  PubMed  Google Scholar 

  15. Krishan S, Sahni S, Leck LYW, Jansson PJ, Richardson DR (2020) Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells. Biochim Biophys Acta Mol Basis Dis 1866(5):165657. https://doi.org/10.1016/j.bbadis.2019.165657

    Article  CAS  PubMed  Google Scholar 

  16. Yuan J, Lovejoy DB, Richardson DR (2004) Novel di-2-pyridyl-derived iron chelators with marked and selective antitumor activity: in vitro and in vivo assessment. Blood 104(5):1450–1458. https://doi.org/10.1182/blood-2004-03-0868

    Article  CAS  PubMed  Google Scholar 

  17. Chen G, Niu C, Yi J, Sun L, Cao H, Fang Y et al (2019) Novel triapine derivative induces copper-dependent cell death in hematopoietic cancers. J Med Chem 62(6):3107–3121. https://doi.org/10.1021/acs.jmedchem.8b01996

    Article  CAS  PubMed  Google Scholar 

  18. Zhou J, Zhang L, Wang M, Zhou L, Feng X, Yu L et al (2019) CPX targeting DJ-1 triggers ROS-induced cell death and protective autophagy in colorectal cancer. Theranostics 9(19):5577–5594. https://doi.org/10.7150/thno.34663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang Z, Huang S (2021) Reposition of the fungicide ciclopirox for cancer treatment. Recent Pat Anti-Cancer Drug Discov 16(2):122–135. https://doi.org/10.2174/1574892816666210211090845

    Article  CAS  Google Scholar 

  20. Fiorillo M, Toth F, Brindisi M, Sotgia F, Lisanti MP (2020) Deferiprone (DFP) targets cancer stem cell (CSC) propagation by inhibiting mitochondrial metabolism and inducing ROS production. Cells 9(6):1529. https://doi.org/10.3390/cells9061529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simoes RV, Veeraperumal S, Serganova IS, Kruchevsky N, Varshavsky J, Blasberg RG et al (2017) Inhibition of prostate cancer proliferation by Deferiprone. NMR Biomed 30(6):10.1002/nbm.3712. https://doi.org/10.1002/nbm.3712

    Article  CAS  PubMed Central  Google Scholar 

  22. Yasumoto E, Nakano K, Nakayachi T, Morshed SR, Hashimoto K, Kikuchi H et al (2004) Cytotoxic activity of deferiprone, maltol and related hydroxyketones against human tumor cell lines. Anticancer Res 24(2b):755–762

    CAS  PubMed  Google Scholar 

  23. Jakobsson AW, Kundu S, Guo J, Chowdhury A, Zhao M, Lindell E et al (2022) Iron chelator VLX600 inhibits mitochondrial respiration and promotes sensitization of neuroblastoma cells in nutrition-restricted conditions. Cancers (Basel) 14(13):3225. https://doi.org/10.3390/cancers14133225

    Article  CAS  PubMed  Google Scholar 

  24. Ekstrom TL, Pathoulas NM, Huehls AM, Kanakkanthara A, Karnitz LM (2021) VLX600 disrupts homologous recombination and synergizes with PARP inhibitors and cisplatin by inhibiting histone lysine demethylases. Mol Cancer Ther 20(9):1561–1571. https://doi.org/10.1158/1535-7163.MCT-20-1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanakkanthara A, Kurmi K, Ekstrom TL, Hou X, Purfeerst ER, Heinzen EP et al (2019) BRCA1 deficiency upregulates NNMT, which reprograms metabolism and sensitizes ovarian cancer cells to mitochondrial metabolic targeting agents. Cancer Res 79(23):5920–5929. https://doi.org/10.1158/0008-5472.CAN-19-1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Fryknäs M, Hernlund E, Fayad W, De Milito A, Olofsson MH et al (2014) Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun 5(1):3295. https://doi.org/10.1038/ncomms4295

    Article  CAS  PubMed  Google Scholar 

  27. Vitiello GA, Medina BD, Zeng S, Bowler TG, Zhang JQ, Loo JK et al (2018) Mitochondrial inhibition augments the efficacy of imatinib by resetting the metabolic phenotype of gastrointestinal stromal tumor. Clin Cancer Res 24(4):972–984. https://doi.org/10.1158/1078-0432.CCR-17-2697

    Article  CAS  PubMed  Google Scholar 

  28. Fryknas M, Zhang X, Bremberg U, Senkowski W, Olofsson MH, Brandt P et al (2016) Iron chelators target both proliferating and quiescent cancer cells. Sci Rep 6:38343. https://doi.org/10.1038/srep38343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mody K, Mansfield AS, Vemireddy L, Nygren P, Gulbo J, Borad M (2019) A phase I study of the safety and tolerability of VLX600, an iron chelator, in patients with refractory advanced solid tumors. Invest New Drugs 37(4):684–692. https://doi.org/10.1007/s10637-018-0703-9

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Lun S, Wang S-H, Jiang X-W, Yang F, Tang J et al (2018) Identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis. J Med Chem 61(3):791–803. https://doi.org/10.1021/acs.jmedchem.7b01319

    Article  CAS  PubMed  Google Scholar 

  31. Dong Y, Fu R, Chen J, Zhang K, Ji M, Wang M et al (2021) Discovery of benzocyclic sulfone derivatives as potent CXCR2 antagonists for cancer immunotherapy. J Med Chem 64(22):16626–16640. https://doi.org/10.1021/acs.jmedchem.1c01219

    Article  CAS  PubMed  Google Scholar 

  32. Chen C, Lu T, Chen P, Li Z, Yang Y, Fan S et al (2023) Cyclization strategy leads to highly potent Bromodomain and extra-terminal (BET) Bromodomain inhibitors for the treatment of acute liver injury. Eur J Med Chem 247:115023. https://doi.org/10.1016/j.ejmech.2022.115023

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Kun H, Gao Y, Yuan D, Ling L, Liu J et al (2022) Discovery of quinazoline derivatives as novel small-molecule inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interaction. Eur J Med Chem 229:113998. https://doi.org/10.1016/j.ejmech.2021.113998

    Article  CAS  PubMed  Google Scholar 

  34. Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593. https://doi.org/10.3389/fcell.2021.645593

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ingham M, Schwartz GK (2017) Cell-cycle therapeutics come of age. J Clin Oncol 35(25):2949–2959. https://doi.org/10.1200/jco.2016.69.0032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb) 3(4):279–296. https://doi.org/10.1039/c0ib00144a

    Article  CAS  PubMed  Google Scholar 

  37. Burke PJ (2017) Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 3(12):857–870. https://doi.org/10.1016/j.trecan.2017.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17(7):395–417. https://doi.org/10.1038/s41571-020-0341-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Coombs GS, Schmitt AA, Canning CA, Alok A, Low IC, Banerjee N et al (2012) Modulation of Wnt/beta-catenin signaling and proliferation by a ferrous iron chelator with therapeutic efficacy in genetically engineered mouse models of cancer. Oncogene 31(2):213–225. https://doi.org/10.1038/onc.2011.228

    Article  CAS  PubMed  Google Scholar 

  40. Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:48. https://doi.org/10.1186/s12943-015-0321

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fujian Provincial Health Technology Project (2020QNA060, China), the Fujian Province Natural Science Foundation (2021J01309, China), Quanzhou City Science and Technology Program (2022NS007, China) and the Startup Fund for scientific research, Huaqiao University (20BS113, China). Thank the Instrumental Analysis Center of Huaqiao University.

Author information

Authors and Affiliations

Authors

Contributions

HL and YG wrote the main manuscript text; YX and XN synthesized target compounds; PZ and CW conducted activity tests; DT and HL prepared figures; XW prepared NMR data of intermediates and IR data for target compounds; JM designed target compounds, checked the data and corrected the manuscript.

Corresponding authors

Correspondence to Cuifang Wang or Junjie Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5465 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gao, Y., Ni, X. et al. Design, synthesis and biological evaluation of 5H-[1,2,4]triazino[5,6-b]indole derivatives bearing a pyridinocycloalkyl moiety as iron chelators. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10840-w

Keywords

Navigation