Skip to main content
Log in

Precision in stereochemistry: the integral role of catalytic asymmetric Biginelli reaction in crafting enantiomerically pure dihydropyrimidinones

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

One well-known multicomponent reaction that is helpful in the synthesis of dihydropyrimidinones (DHPMs), important molecules in organic synthesis and medicinal chemistry, is the Biginelli reaction. Because of their wide range of biological activities, DHPMs are regarded as essential chemicals. A great deal of research has been done in the last few decades to find ways to produce enantiomerically pure DHPMs because of their notable and focused target-oriented biological activities. In this reaction, numerous structural variants and catalysts have been employed in a range of solvents to yield an enormous number of Biginelli-type compounds. In the present review, the available catalysts in the literature including ionic liquids, Lewis acids, and organocatalysts for the Biginelli reaction and synthesis of a large number of asymmetric compounds since 2003 are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49

Similar content being viewed by others

References

  1. Brandi A, Cicchi S, Cordero FM, Goti A (2003) Heterocycles from alkylidenecyclopropanes. Chem Rev 103(4):1213–1270

    Article  CAS  PubMed  Google Scholar 

  2. Arora P, Arora V, Lamba HS, Wadhwa D (2012) Importance of heterocyclic chemistry: a review. Int J Pharm Sci Res 3(9):2947

    Google Scholar 

  3. Baranwal J, Kushwaha S, Singh S, Jyoti A (2023) A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr Phys Chem 13(1):2–19

    Article  CAS  Google Scholar 

  4. Jiang B, Rajale T, Wever W, Shu-Jiang T, Li G (2010) Multicomponent reactions for the synthesis of heterocycles. Chem Asian J 5(11):2318–2335

    Article  CAS  PubMed  Google Scholar 

  5. Rodrigues MO, Eberlin MN, Neto BAD (2021) How and why to investigate multicomponent reactions mechanisms? A critical review. Chem Rec 21(10):2762–2781

    Article  CAS  PubMed  Google Scholar 

  6. Graebin CS, Ribeiro FV, Rogério KR, Kümmerle AE (2019) Multicomponent reactions for the synthesis of bioactive compounds: a review. Curr Org Synth 16(6):855–899

    Article  CAS  PubMed  Google Scholar 

  7. Strecker A (1850) Ueber Die Künstliche Bildung Der Milchsäure Und Einen Neuen, Dem Glycocoll Homologen Körper. Justus Liebigs Ann Chem 75(1):27–45

    Article  Google Scholar 

  8. Ghaith EA, Zoorob HH, Ibrahim ME, Sawamura M, Hamama WS (2020) The Scope of 3-acetyl-4-hydroxy-6-methyl-2h-pyran-2-one (Dha). Curr Org Chem 24(13):1459–1490

    Article  CAS  Google Scholar 

  9. Biginelli CP (1893) Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz Chim Ital 23(1):360–413

    Google Scholar 

  10. Heravi MM, Asadi S, Lashkariani BM (2013) Recent progress in asymmetric Biginelli reaction. Mol Divers 17(2):389–407

    Article  CAS  PubMed  Google Scholar 

  11. Alvim HGO, Lima TB, de Oliveira AL, de Oliveira HCB, Silva FM, Gozzo FC, Souza RY, da Silva WA, Neto BAD (2014) Facts, presumptions, and myths on the solvent-free and catalyst-free Biginelli reaction. What is catalysis for? J Org Chem 79(8):3383–3397

    Article  CAS  PubMed  Google Scholar 

  12. Anjaneyulu B, Rao D, GB A (2015) Mini review: Biginelli reaction for the synthesis of dihydropyrimidinones. Int J Eng Technol Res 3(6):26–37

    Google Scholar 

  13. Mostafa AS, Selim KB (2018) Synthesis and anticancer activity of new dihydropyrimidinone derivatives. Eur J Med Chem 156:304–315

    Article  CAS  PubMed  Google Scholar 

  14. Agbaje OC, Fadeyi OO, Adamson Fadeyi S, Myles LE, Okoro CO (2011) Synthesis and in vitro cytotoxicity evaluation of some fluorinated hexahydropyrimidine derivatives. Bioorg Med Chem Lett 21(3):989–992

    Article  CAS  PubMed  Google Scholar 

  15. Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB (2020) A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25(8):1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prasad T, Mahapatra A, Sharma T, Sahoo CR, Padhy RN (2023) Dihydropyrimidinones as potent anticancer agents: insight into the structure-activity relationship. Arch Pharm 356(6):2200664

    Article  CAS  Google Scholar 

  17. Mir PA, Uppal J, Noor A, Dar MO, Wali AF, Ovais S, Mir RH (2023) Recent advances of dihydropyrimidinone derivatives in cancer research. Dihydropyrimidinones as Potent Anticancer Agents, 153–171.

  18. Bhatewara A, Jetti SR, Kadre T, Paliwal P, Jain S (2013) Microwave-assisted synthesis and biological evaluation of dihydropyrimidinone derivatives as anti-inflammatory, antibacterial, and antifungal agents. Int J Med Chem 2013

  19. Shaikh A, Meshram J (2016) Novel 1, 3, 4-oxadiazole derivatives of dihydropyrimidinones: synthesis, anti-inflammatory, anthelmintic, and antibacterial activity evaluation. J Heterocycl Chem 53(4):1176–1182

    Article  CAS  Google Scholar 

  20. De K, Chandra S, Sarkar B, Ganguly S, Misra M (2010) Synthesis and biological evaluation of 99m Tc-Dhpm complex: a potential new radiopharmaceutical for lung imaging studies. J Radioanal Nucl Chem 283:621–628

    Article  CAS  Google Scholar 

  21. Zorkun IS, Saraç S, Çelebi S, Erol K (2006) Synthesis of 4-aryl-3, 4-dihydropyrimidin-2 (1h)-thione derivatives as potential calcium channel blockers. Bioorg Med Chem 14(24):8582–8589

    Article  CAS  PubMed  Google Scholar 

  22. Singh OM, Singh SJ, Devi MB, Devi LN, Singh NI, Lee S-G (2008) Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg Med Chem Lett 18(24):6462–6467

    Article  CAS  PubMed  Google Scholar 

  23. Oyebamiji AK, Semire B (2021) In-silico study on anti-bacteria and anti-fungal activities of 3, 4-dihydropyrimidin-2 (1 H)-one urea derivatives. Chem Afr 4(1):149–159

    Article  CAS  Google Scholar 

  24. Shaikh A, Meshram JS (2015) Design, synthesis and pharmacological assay of novel azo derivatives of dihydropyrimidinones. Cogent Chem 1(1):1019809

    Article  Google Scholar 

  25. Allam M, Bhavani AKD, Vodnala S (2017) The new green procedure for pyrazolopyrimidinone based dihydropyrimidinones and their antibacterial screening. Russ J Gen Chem 87:2712–2718

    Article  CAS  Google Scholar 

  26. Kumarasamy D, Roy BG, Rocha-Pereira J, Neyts J, Nanjappan S, Maity S, Mookerjee M, Naesens L (2017) Synthesis and in vitro antiviral evaluation of 4-substituted 3, 4-dihydropyrimidinones. Bioorg Med Chem Lett 27(2):139–142

    Article  CAS  PubMed  Google Scholar 

  27. Manos-Turvey A, Al-Ashtal HA, Needham PG, Hartline CB, Prichard MN, Wipf P, Brodsky JL (2016) Dihydropyrimidinones and-thiones with improved activity against human polyomavirus family members. Bioorg Med Chem Lett 26(20):5087–5091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beena KP, Rajasekaran A, Manna PK, Suresh R (2017) Design, synthesis, characterisation and invitro antioxidant evaluation of some substituted dihydropyrimidinone derivatives.

  29. Attri P, Bhatia R, Gaur J, Arora B, Gupta A, Kumar N, Choi EH (2017) Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities. Arab J Chem 10(2):206–214

    Article  CAS  Google Scholar 

  30. Ilyas U, Nazir B, Altaf R, Muhammad SA, Zafar H, Paiva-Santos AC, Abbas M, Duan Y (2022) Investigation of anti-diabetic potential and molecular simulation studies of dihydropyrimidinone derivatives. Front Endocrinol 13:1022623

    Article  Google Scholar 

  31. Upadhyay P, Yadav AK, Panjwani D, Sachan N (2015) Anti-convulsant property of synthesized compound dihydropyrimidinone-5 in laboratory animals. Asian J Pharm Clin Res 8(5):146–149

    Google Scholar 

  32. Singadi A, Venkateswarlu K. Synthesis of Piperonal Based Dihydropyrimidinones and Evaluation for Possible Anticonvulsant and Antibacterial Activities

  33. Zhu C, Yang B, Zhao Y, Changkui Fu, Tao L, Wei Y (2013) A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry? Polym Chem 4(21):5395–5400

    Article  CAS  Google Scholar 

  34. Ma Z, Wang Bo, Tao L (2022) Stepping further from coupling tools: development of functional polymers via the Biginelli reaction. Molecules 27(22):7886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao Y, Ying Yu, Zhang Y, Wang X, Yang B, Zhang Y, Zhang Q, Changkui Fu, Wei Y, Tao L (2015) From drug to adhesive: a new application of poly (dihydropyrimidin-2 (1 H)-one) S via the Biginelli polycondensation. Polym Chem 6(27):4940–4945

    Article  CAS  Google Scholar 

  36. Heravi MM, Moradi R, Mohammadkhani L, Moradi B (2018) Current progress in asymmetric Biginelli reaction: an update. Mol Divers 22:751–767

    Article  CAS  PubMed  Google Scholar 

  37. Kappe CO (1997) A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate1. J Org Chem 62(21):7201–7204

    Article  CAS  PubMed  Google Scholar 

  38. Faizan S, Roohi TF, Raju RM, Yuvaraj S, Prashantha Kumar BR (2023) A century-old one-pot multicomponent Biginelli reaction products still finds a niche in drug discoveries: synthesis, mechanistic studies and diverse biological activities of dihydropyrimidines. J Mol Struct 136020

  39. Chandravarkar A, Aneeja T, Anilkumar G (2023) Advances in Biginelli reaction: a comprehensive review. J Heterocycl Chem

  40. Cho H, Ueda M, Shima K, Mizuno A, Hayashimatsu M, Ohnaka Y, Takeuchi Y, Hamaguchi M, Aisaka K (1989) Dihydropyrimidines: novel calcium antagonists with potent and long-lasting vasodilative and anti-hypertensive activity. J Med Chem 32(10):2399–2406

    Article  CAS  PubMed  Google Scholar 

  41. Atwal KS, Rovnyak GC, David Kimball S, Floyd DM, Moreland S, Swanson BN, Gougoutas JZ, Schwartz J, Smillie KM, Malley MF (1990) Dihydropyrimidine calcium channel blockers. Ii. 3-substituted-4-aryl-1, 4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J Med Chem 33(9):2629–2635

    Article  CAS  PubMed  Google Scholar 

  42. Alajarin R, Vaquero JJ, Alvarez-Builla J, Fau M, de Casa-Juana C, Sunkel JG, Priego PG-S, Torres R (1994) Imidazo [1, 5-a] pyrimidine and benzo [4, 5] imidazo [1, 2-a] pyrimidine derivatives as calcium antagonists. Bioorg Med Chem 2(5):323–329

    Article  CAS  PubMed  Google Scholar 

  43. Sandhu JS (2012) Past, present and future of the Biginelli reaction: a critical perspective. ARKIVOC Online J Org Chem

  44. Nagarathnam D, Miao SW, Lagu B, Chiu G, James Fang T, Dhar M, Zhang J, Tyagarajan S, Marzabadi MR, Zhang F (1999) Design and synthesis of novel Α1a adrenoceptor-selective antagonists. 1. Structure—activity relationship in dihydropyrimidinones. J Med Chem 42(23):4764–4777

    Article  CAS  PubMed  Google Scholar 

  45. Wong WC, Sun W, Lagu B, Tian D, Marzabadi MR, Zhang F, Nagarathnam D, Miao SW, Wetzel JM, Peng J (1999) Design and synthesis of novel Α1a adrenoceptor-selective antagonists. 4. Structure—activity relationship in the dihydropyrimidine series. J Med Chem 42(23):4804–4813

    Article  CAS  PubMed  Google Scholar 

  46. Lagu B, Tian D, Chiu G, Nagarathnam D, Fang J, Shen Q, Forray C, Ransom RW, Chang RSL, Vyas KP (2000) Synthesis and evaluation of furo [3, 4-D] pyrimidinones as selective Α1a-adrenergic receptor antagonists. Bioorg Med Chem Lett 10(2):175–178

    Article  CAS  PubMed  Google Scholar 

  47. Strocchia M, Terracciano S, Chini MG, Vassallo A, Vaccaro MC, Dal Piaz F, Leone A, Riccio R, Bruno I, Bifulco G (2015) Targeting the Hsp90 C-terminal domain by the chemically accessible dihydropyrimidinone scaffold. Chem Commun 51(18):3850–3853

    Article  CAS  Google Scholar 

  48. Maddela S, Makula A, Galigniana MD, Parambi DGT, Federicci F, Mazaira G, Hendawy OM, Dev S, Mathew GE, Mathew B (2019) Fe3O4 nanoparticles mediated synthesis of novel spirooxindole-dihydropyrimidinone molecules as Hsp90 inhibitors. Arch Pharm 352(1):1800174

    Google Scholar 

  49. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286(5441):971–974

    Article  CAS  PubMed  Google Scholar 

  50. Prokopcová H, Dallinger D, Uray G, Kaan HYK, Ulaganathan V, Kozielski F, Laggner C, Oliver Kappe C (2010) Structure–activity relationships and molecular docking of novel dihydropyrimidine-based mitotic Eg5 inhibitors. ChemMedChem 5(10):1760–1769

    Article  PubMed  Google Scholar 

  51. RamaáRao AV (1995) An enantiospecific synthesis of the tricyclic guanidine segment of the anti-HIV marine alkaloid batzelladine A. J Chem Soc Chem Commun 13:1369–1370

    Google Scholar 

  52. Heys L, Moore CG, Murphy PJ (2000) The guanidine metabolites of Ptilocaulis spiculifer and related compounds; isolation and synthesis. Chem Soc Rev 29(1):57–67

    Article  CAS  Google Scholar 

  53. Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC (1991) Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-Aryl-1, 2, 3, 4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J Med Chem 34(2):806–811

    Article  CAS  PubMed  Google Scholar 

  54. Varala R, Mujahid Alam M, Adapa SR (2003) Bismuth triflate catalyzed one-pot synthesis of 3, 4-dihydropyrimidin-2 (1h)-ones: an improved protocol for the Biginelli reaction. Synlett 2003(01):0067–0070

    Google Scholar 

  55. Nagarajaiah H, Mukhopadhyay A, Moorthy JN (2016) Biginelli reaction: an overview. Tetrahedron Lett 57(47):5135–5149

    Article  CAS  Google Scholar 

  56. Russowsky D, Canto RFS, Sanches SAA, D’Oca MGM, de Fátima Â, Pilli RA, Kohn LK, Antoˆnio MA, Ernesto de Carvalho J (2006) Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorg Chem 34(4):173–182

    Article  CAS  PubMed  Google Scholar 

  57. Gong L-Z, Chen X-H, Xiao-Ying X (2007) Asymmetric organocatalytic Biginelli reactions: a new approach to quickly access optically active 3, 4-dihydropyrimidin-2-(1h)-ones. Chem A Eur J 13(32):8920–8926

    Article  CAS  Google Scholar 

  58. DeBonis S, Simorre J-P, Crevel I, Lebeau L, Skoufias DA, Blangy A, Ebel C, Gans P, Cross R, Hackney DD (2003) Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry 42(2):338–349

    Article  CAS  PubMed  Google Scholar 

  59. Alvim HGO, Pinheiro DLJ, Carvalho-Silva VH, Fioramonte M, Gozzo FC, da Silva WA, Amarante GW, Neto BAD (2018) Combined role of the asymmetric counteranion-directed catalysis (Acdc) and ionic liquid effect for the enantioselective Biginelli multicomponent reaction. J Org Chem 83(19):12143–12153

    Article  CAS  PubMed  Google Scholar 

  60. Yadav GD, Singh S (2016) (L)-Prolinamide imidazolium hexafluorophosphate ionic liquid as an efficient reusable organocatalyst for direct asymmetric aldol reaction in solvent-free condition. RSC Adv 6(102):100459–100466

    Article  CAS  Google Scholar 

  61. Deepa MJA, Singh S (2022) Enantioselective Biginelli reaction catalyzed by (L)-prolinamide containing imidazolium ionic liquid. ChemistrySelect 7(5):e202103918

    Article  CAS  Google Scholar 

  62. Chen X-H, Xiao-Ying Xu, Liu H, Cun L-F, Gong L-Z (2006) Highly enantioselective organocatalytic Biginelli reaction. J Am Chem Soc 128(46):14802–14803

    Article  CAS  PubMed  Google Scholar 

  63. Xu F, Huang D, Han C, Shen W, Lin X, Wang Y (2010) Spinol-derived phosphoric acids: synthesis and application in enantioselective Friedel—Crafts reaction of indoles with imines. J Org Chem 75(24):8677–8680

    Article  CAS  PubMed  Google Scholar 

  64. Huang D, Fangxi X, Lin X, Wang Y (2012) Highly enantioselective Pictet-Spengler reaction catalyzed by Spinol-phosphoric acids. Chem Eur J 18(11):3148–3152

    Article  CAS  PubMed  Google Scholar 

  65. Xu F, Huang D, Lin X, Wang Y (2012) Highly enantioselective Biginelli reaction catalyzed by Spinol-phosphoric acids. Org Biomol Chem 10(22):4467–4470

    Article  CAS  PubMed  Google Scholar 

  66. Schnell B, Krenn W, Faber K, Oliver Kappe C (2000) Synthesis and reactions of Biginelli-compounds. Part 23. 1 Chemoenzymatic syntheses of enantiomerically pure 4-aryl-3, 4-dihydropyrimidin-2 (1 H)-ones. J Chem Soc Perkin Trans 1(24):4382–4389

    Article  Google Scholar 

  67. Linghu X, Potnick JR, Johnson JS (2004) Metallophosphites as umpolung catalysts: the enantioselective cross silyl benzoin reaction. J Am Chem Soc 126(10):3070–3071

    Article  PubMed  Google Scholar 

  68. Hu X, Zhang R, Xie J, Zhou Z, Shan Z (2017) Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from L-tartaric acid and application to the asymmetric catalytic Biginelli reaction. Tetrahedron Asymmetry 28(1):69–74

    Article  CAS  Google Scholar 

  69. Guo Y, Gao Z, Meng X, Huang G, Zhong H, Huilan Yu, Ding X, Tang H, Zou C (2017) Highly enantioselective Biginelli reaction of aliphatic aldehydes catalyzed by chiral phosphoric acids. Synlett 28(15):2041–2045

    Article  CAS  Google Scholar 

  70. Shan Z, Xiaoyun Hu, Zhou Y, Peng X, Li Z (2010) A Convenient Approach to C2-Chiral 1, 1, 4, 4-Tetrasubstituted Butanetetraols: Direct Alkylation or Arylation of Enantiomerically Pure Diethyl Tartrates. Helv Chim Acta 93(3):497–503

    Article  CAS  Google Scholar 

  71. Hu X, Guo J, Wang C, Zhang R, Borovkov V (2020) Stereoselective Biginelli-like reaction catalyzed by a chiral phosphoric acid bearing two hydroxy groups. Beilstein J Org Chem 16(1):1875–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao Z, Li J, Song Y, Bi X, Meng X, Guo Y (2020) Eight-step total synthesis of (+)-crambescin A. RSC Adv 10(64):39266–39270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo Y, Gao Z, Wang K, Li J, Bi X, Guo L, Liu H, Shi E, Xiao J (2020) Chiral Spirocyclic Phosphoric Acid-Catalyzed Synthesis of 4-Alkyl-3, 4-Dihydropyrimidin-2 (1h)-One Derivatives by Asymmetric Biginelli Reactions. Asian J Org Chem 9(4):626–630

    Article  CAS  Google Scholar 

  74. Chen Y-Y, Jiang Y-J, Fan Y-S, Sha D, Wang Q, Zhang G, Zheng L, Zhang S (2012) Double axially chiral bisphosphorylimides as novel Brønsted acids in asymmetric three-component Mannich reaction. Tetrahedron Asymmetry 23(11–12):904–909

    Article  CAS  Google Scholar 

  75. An D, Fan Y-S, Gao Y, Zhu Z-Q, Zheng L-Y, Zhang S-Q (2014) Highly enantioselective Biginelli reaction catalyzed by double axially chiral bisphosphorylimides. Eur J Org Chem 2014(2):301–306

    Article  CAS  Google Scholar 

  76. Dutasta JP, Declercq JP, Esteban-Calderon C, Tinant B (1989) Novel ditopic receptors based on the P2n2 diphosphazane ring: synthesis and X-ray structural characterization of cis and trans bis (crown ether) annelated 1, 3, 2. lambda. 5, 4. lambda. 5-diazadiphosphetidine 2, 4-disulfide. J Am Chem Soc 111(18):7136–7144

    Article  CAS  Google Scholar 

  77. Fedorova OV, Titova YA, Ovchinnikova IG, Rusinov GL, Charushin VN (2018) 4-Hydroxyproline Containing Podands as New Chiralcatalysts for the Asymmetric Biginelli Reaction. Mendeleev Commun 28(4):357–358

    Article  CAS  Google Scholar 

  78. Borodina O, Ovchinnikova I, Fedorova O, Makarov G, Bartashevich E (2022) Effect of 4-hydroxy-l-proline-containing podands on the stereoselectivity of Biginelli reaction according to molecular dynamics. Comput Theor Chem 1217:113885

    Article  CAS  Google Scholar 

  79. Yu H, Peng X, He H, Zhu J, Lin H, Han S (2017) Highly enantioselective Biginelli reactions using methanopyroline/thiourea–based dual organocatalyst systems: asymmetric synthesis of 4-substituted unsaturated aryl dihydropyrimidines. Tetrahedron Asymmetry 28(2):257–265

    Article  CAS  Google Scholar 

  80. Lemberger N, Almog J (2007) Structure elucidation of dyes that are formed in the colorimetric detection of the improvised explosive urea nitrate. J Forensic Sci 52(5):1107–1110

    Article  CAS  PubMed  Google Scholar 

  81. Rozin R, Almog J (2011) Colorimetric detection of urea nitrate: the missing link. Forensic Sci Int 208(1–3):25–28

    Article  CAS  PubMed  Google Scholar 

  82. Lillo VJ, Mansilla J, Saa JM (2016) Organocatalysis by networks of cooperative hydrogen bonds: enantioselective direct Mannich addition to preformed Arylideneureas. Angew Chem 128(13):4384–4388

    Article  Google Scholar 

  83. Wang Y, Yang H, Jipan Yu, Miao Z, Chen R (2009) Highly enantioselective Biginelli reaction promoted by chiral bifunctional primary amine-thiourea catalysts: asymmetric synthesis of dihydropyrimidines. Adv Synth Catal 351(18):3057–3062

    Article  CAS  Google Scholar 

  84. Ding D, Zhao C-G (2010) Primary amine catalyzed Biginelli reaction for the enantioselective synthesis of 3, 4-dihydropyrimidin-2 (1h)-ones. Wiley Online Library

    Google Scholar 

  85. Wang Y, Jipan Yu, Miao Z, Chen R (2011) Bifunctional primary amine-thiourea–Tfoh (Bpat· Tfoh) as a chiral phase-transfer catalyst: the asymmetric synthesis of dihydropyrimidines. Org Biomol Chem 9(8):3050–3054

    Article  CAS  PubMed  Google Scholar 

  86. Cai Y-F, Yang H-M, Li L, Jiang K-Z, Lai G-Q, Jiang J-X, Li-Wen X (2010) Cooperative and enantioselective Nbcl5/primary amine catalyzed Biginelli reaction. Wiley Online Library

    Book  Google Scholar 

  87. Xu D-Z, Li H, Wang Y (2012) Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: asymmetric synthesis of dihydropyrimidines. Tetrahedron 68(38):7867–7872

    Article  CAS  Google Scholar 

  88. Frings M, Thomé I, Bolm C (2012) Synthesis of chiral sulfoximine-based thioureas and their application in asymmetric organocatalysis. Beilstein J Org Chem 8(1):1443–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li Z, Ma J, Chen J, Pan Yi, Qiang J, Wang L (2009) High-Performance Liquid Chromatography Study of the Nitration Course of Tetrabutoxycalix [4] Arene at the Upper Rim: determination of the Optimum Conditions for the Preparation of 5, 11, 17-Trinitro-25, 26, 27, 28-Tetrabutoxycalix [4] Arene. Chin J Chem 27(10):2031–2036

    Article  CAS  Google Scholar 

  90. Li ZY, Xing HJ, Huang GL, Sun XQ, Jiang JL, Wang LY (2011) Novel supramolecular organocatalysts of hydroxyprolinamide based on calix [4] arene scaffold for the enantioselective Biginelli reaction. Sci China Chem 54:1726–1734

    Article  CAS  Google Scholar 

  91. Lu N, Chen D, Zhang G, Liu Q (2011) Theoretical investigation on enantioselective Biginelli reaction catalyzed by natural tartaric acid. Int J Quantum Chem 111(9):2031–2038

    Article  CAS  Google Scholar 

  92. Wu Y-Y, Chai Z, Liu X-Y, Zhao G, Wang S-W (2009) Synthesis of substituted 5-(pyrrolidin-2-yl) tetrazoles and their application in the asymmetric Biginelli reaction. Wiley Online Library

    Google Scholar 

  93. Sohn J-H, Choi H-M, Lee S, Joung S, Lee H-Y (2009) Probing the mode of asymmetric induction of Biginelli reaction using proline ester salts. Wiley Online Library

    Book  Google Scholar 

  94. Xin J, Chang L, Hou Z, Shang D, Liu X, Feng X (2008) An enantioselective Biginelli reaction catalyzed by a simple chiral secondary amine and achiral Brønsted acid by a dual-activation route. Chem A Eur J 14(10):3177–3181

    Article  CAS  Google Scholar 

  95. Gonzalez-Olvera R, Demare P, Regla I, Juaristi E (2008) Application of (1s, 4s)-2, 5-diazabicyclo [2.2. 1] heptane derivatives in asymmetric organocatalysis: the Biginelli reaction. ARKIVOC 6:61–72

    Article  Google Scholar 

  96. Jafari-Chermahini MT, Tavakol H (2019) Immobilized gelatin–Λ–Carrageenan on magnetite nanoparticles as an efficient organocatalyst for enantioselective Biginelli reaction. ChemistrySelect 4(6):1895–1902

    Article  CAS  Google Scholar 

  97. Yadav JS, Subba Reddy BV, Reddy PT (2001) Unprecedented synthesis of Hantzsch 1, 4-Dihydropyridines under Biginelli reaction conditions. Synth Commun 31(3):425–430

    Article  CAS  Google Scholar 

  98. Connor PA, Dobson KD, James McQuillan A (1995) New sol-gel attenuated total reflection infrared spectroscopic method for analysis of adsorption at metal oxide surfaces in aqueous solutions. Chelation of TiO2, ZrO2, and Al2O3 surfaces by catechol, 8-quinolinol, and acetylacetone. Langmuir 11(11):4193–4195

    Article  CAS  Google Scholar 

  99. Fedorova OV, Valova MS, Titova YA, Ovchinnikova IG, Grishakov AN, Uimin MA, Mysik AA, Ermakov AE, Rusinov GL, Charushin VN (2011) Catalytic effect of nanosized metal oxides in the Biginelli reaction. Kinet Catal 52:226–233

    Article  CAS  Google Scholar 

  100. Titova Y, Fedorova O, Rusinov G, Vigorov A, Krasnov V, Murashkevich A, Charushin V (2015) Effect of nanosized TiO2–SiO2 covalently modified by chiral molecules on the asymmetric Biginelli reaction. Catal Today 241:270–274

    Article  CAS  Google Scholar 

  101. Fedorova OV, Titova YA, Vigorov AY, Toporova MS, Alisienok OA, Murashkevich AN, Krasnov VP, Rusinov GL, Charushin VN (2016) Asymmetric Biginelli reaction catalyzed by silicon, titanium and aluminum oxides. Catal Lett 146:493–498

    Article  CAS  Google Scholar 

  102. Fedorov PP, Tkachenko EA, Kuznetsov SV, Voronov VV, Lavrishchev SV (2007) Preparation of Mgo nanoparticles. Inorg Mater 43:502–504

    Article  CAS  Google Scholar 

  103. Valova MS, Koryakova OV, Maksimovskikh AI, Fedorova OV, Murashkevich AN, Alisienok OA (2014) Active sites on the surface of nano-sized SiO2–TiO2 composites. J Appl Spectrosc 81:422–426

    Article  CAS  Google Scholar 

  104. Koryakova OV, Valova MS, Titova YA, Murashkevich AN, Fedorova OV (2021) Synthesis and spectroscopic study of Si, Ti, Mg, and Zn oxides modified by L-proline. J Appl Spectrosc 88:519–527

    Article  CAS  Google Scholar 

  105. Murashkevich AN, Fedorova OV, Kuznetsova TF, Alisienok OA, Titova YA, Koryakova OV, Rusinov GL (2022) Mixed oxides of silicon, titanium, zirconium, modified with carboxylic acids, as heterogeneous catalysts for the asymmetric Biginelli reaction. J Sol-Gel Sci Technol 1–12

  106. Karthikeyan P, Aswar SA, Muskawar PN, Bhagat PR, Senthil Kumar S (2013) Development and efficient 1-glycyl-3-methyl imidazolium chloride-copper (Ii) Complex catalyzed highly enantioselective synthesis of 3, 4-dihydropyrimidin-2 (1h)-ones. J Organomet Chem 723:154–162

    Article  CAS  Google Scholar 

  107. Iglesias AL, Aguirre G, Somanathan R, Parra-Hake M (2004) New chiral Schiff base–Cu (Ii) complexes as cyclopropanation catalysts. Polyhedron 23(18):3051–3062

    Article  CAS  Google Scholar 

  108. Lin L, Fan Q, Qin Bo, Feng X (2006) Highly Enantio-and Diastereoselective Brassard Type Hetero-Diels− Alder Approach to 5-Methyl-Containing Α, Β-Unsaturated Δ-Lactones. J Org Chem 71(11):4141–4146

    Article  CAS  PubMed  Google Scholar 

  109. Fernández-G JM, Ausbun-Valdés C, González-Guerrero EE, Toscano RA (2007) Characterization and crystal structure of some Schiff base copper (Ii) complexes derived from enantiomeric pairs of chiral amines. Z Anorg Allg Chem 633(8):1251–1256

    Article  Google Scholar 

  110. Kamali M (2015) Asymmetric synthesis of dihydropyrimidines using chiral Schiff base copper (Ii) complex as a chiral catalyst. Int J ChemTech Res 8:536–541

    CAS  Google Scholar 

  111. Krivtsov IV, Titova YuA, Ilkaeva MV, Avdin VV, Fedorova OV, Khainakov SA, Garcia JR, Rusinov GL, Charushin VN (2014) Catalysts for enantioselective Biginelli reaction based on the composite silica-zirconia xerogels prepared using different zirconium sources. J Sol-Gel Sci Technol 69:448–452

    Article  CAS  Google Scholar 

  112. Azizi N, Dezfuli S, Hahsemi MM (2012) Eutectic salt catalyzed environmentally benign and highly efficient biginelli reaction. Sci World J 2012.

  113. Huang Y, Yang F, Zhu C (2006) Biginelli reaction using a new chiral Ytterbium catalyst. Synfacts 02:0132–0232

    Google Scholar 

  114. Muñoz-Muñiz O, Juaristi E (2003) An enantioselective approach to the Biginelli dihydropyrimidinone condensation reaction using Cecl3 and Incl3 in the presence of chiral ligands. ARKIVOC 11:16–26

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the Presidency University, Karnataka, India, and the Research Council of Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept and design of the study. Data collection and analysis were performed by A.S.B and A.T. The first draft of the manuscript was written by A.B and G.B.D.R, and all authors commented on previous versions of the manuscript. M.A performed and revised the final document. All authors have read the final version of the manuscript and consented to its publication.

Corresponding authors

Correspondence to Anjaneyulu Bendi or Mozhgan Afshari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendi, A., Bhathiwal, A.S., Tiwari, A. et al. Precision in stereochemistry: the integral role of catalytic asymmetric Biginelli reaction in crafting enantiomerically pure dihydropyrimidinones. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10827-7

Keywords

Navigation