Skip to main content

Advertisement

Log in

In silico identification of potential phytochemical inhibitors for mpox virus: molecular docking, MD simulation, and ADMET studies

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The mpox virus (MPXV), a member of the Poxviridae family, which recently appeared outside of the African continent has emerged as a global threat to public health. Given the scarcity of antiviral treatments for mpox disease, there is a pressing need to identify and develop new therapeutics. We investigated 5715 phytochemicals from 266 species available in IMMPAT database as potential inhibitors for six MPXV targets namely thymidylate kinase (A48R), DNA ligase (A50R), rifampicin resistance protein (D13L), palmytilated EEV membrane protein (F13L), viral core cysteine proteinase (I7L), and DNA polymerase (E9L) using molecular docking. The best-performing phytochemicals were also subjected to molecular dynamics (MD) simulations and in silico ADMET analysis. The top phytochemicals were forsythiaside for A48R, ruberythric acid for A50R, theasinensin F for D13L, theasinensin A for F13L, isocinchophyllamine for I7L, and terchebin for E9L. Interestingly, the binding energies of these potential phytochemical inhibitors were far lower than brincidofovir and tecovirimat, the standard drugs used against MPXV, hinting at better binding properties of the former. These findings may pave the way for developing new MPXV inhibitors based on natural product scaffolds. However, they must be further studied to establish their inhibitory efficacy and toxicity in in vitro and in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The sequence data used in this work were obtained from NCBI. The relevant derived data are given in the supplemental tables.

References

  1. Breman JG, Kalisa-Rutinull SMV et al (1980) Human monkeypox, 1970–79. Bull World Health Organ 58:165–182

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alakunle E, Moens U, Nchinda G, Okeke MI (2020) Monkeypox virus in Nigeria: infection biology, epidemiology, and evolution. Viruses. https://doi.org/10.3390/v12111257

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beer EM, Rao VB (2019) A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis 13:e0007791. https://doi.org/10.1371/journal.pntd.0007791

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mahase E (2022) Seven monkeypox cases are confirmed in England. BMJ 377:o1239. https://doi.org/10.1136/bmj.o1239

    Article  PubMed  Google Scholar 

  5. Multi-country outbreak of mpox, External situation report #23–26 May 2023. https://www.who.int/publications/m/item/multi-country-outbreak-of-mpox--external-situation-report--23---26-may-2023. Accessed 10 Jul 2023

  6. Voigt EA, Kennedy RB, Poland GA (2016) Defending against smallpox: a focus on vaccines. Expert Rev Vaccines 15:1197–1211. https://doi.org/10.1080/14760584.2016.1175305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunge EM, Hoet B, Chen L et al (2022) The changing epidemiology of human monkeypox: a potential threat? A systematic review. PLoS Negl Trop Dis 16:e0010141. https://doi.org/10.1371/journal.pntd.0010141

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nguyen P-Y, Ajisegiri WS, Costantino V et al (2021) Reemergence of human monkeypox and declining population immunity in the context of urbanization, Nigeria, 2017–2020. Emerg Infect Dis 27:1007–1014. https://doi.org/10.3201/eid2704.203569

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lane HC, Montagne JL, Fauci AS (2001) Bioterrorism: A clear and present danger. Nat Med 7:1271–1273. https://doi.org/10.1038/nm1201-1271

    Article  CAS  PubMed  Google Scholar 

  10. Fact Sheet Monkeypox TPOXX treatment|FDA. https://www.fda.gov/media/160480. Accessed 10 Jul 2023

  11. Siegrist EA, Sassine J (2023) Antivirals with activity against Mpox: A clinically oriented review. Clin Infect Dis 76:155–164. https://doi.org/10.1093/cid/ciac622

    Article  CAS  PubMed  Google Scholar 

  12. Kapoor R, Sharma D-B, Kanwar S (2017) Antiviral phytochemicals: An overview. Biochem Physiol. https://doi.org/10.4172/2168-9652.1000220

    Article  Google Scholar 

  13. WHO traditional medicine strategy: 2014–2023. https://www.who.int/publications-detail-redirect/9789241506096. Accessed 10 Jul 2023

  14. Izzedine H, Launay-Vacher V, Deray G (2005) Antiviral drug-induced nephrotoxicity. Am J Kidney Dis 45:804–817. https://doi.org/10.1053/j.ajkd.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  15. Vaou N, Stavropoulou E, Voidarou C et al (2021) Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms 9:2041. https://doi.org/10.3390/microorganisms9102041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghate SD, Suravajhala P, Patil P et al (2023) Molecular detection of monkeypox and related viruses: challenges and opportunities. Virus Genes 59:343–350. https://doi.org/10.1007/s11262-023-01975-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lam HYI, Guan JS, Mu Y (2022) In silico repurposed drugs against monkeypox virus. Molecules 27:5277. https://doi.org/10.3390/molecules27165277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirdita M, Schütze K, Moriwaki Y et al (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. https://doi.org/10.1038/s41592-022-01488-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shetty S, Shastry PR, Shetty V et al (2022) Functional analysis of Escherichia coli K12 toxin-antitoxin systems as novel drug targets using a network biology approach. Microb Pathog. https://doi.org/10.1016/j.micpath.2022.105683

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP et al (2018) IMPPAT: a curated database of Indian medicinal plants. Phytochem Ther Sci Rep 8:4329. https://doi.org/10.1038/s41598-018-22631-z

    Article  CAS  Google Scholar 

  23. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  24. Tareq Hassan Khan M (2010) Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. CDM 11:285–295. https://doi.org/10.2174/138920010791514306

    Article  Google Scholar 

  25. Hansson T, Oostenbrink C, van Gunsteren W (2002) Molecular dynamics simulations. Curr Opin Struct Biol 12:190–196. https://doi.org/10.1016/S0959-440X(02)00308-1

    Article  CAS  PubMed  Google Scholar 

  26. Malkaje S, Srinivasa MG et al (2023) An In-silico approach: design, homology modeling, molecular docking, MM/GBSA simulations, and ADMET screening of novel 1,3,4-oxadiazoles as PLK1inhibitors. Curr Drug Res Rev 15:88–100

    Article  CAS  PubMed  Google Scholar 

  27. Prajapati J, Patel R, Goswami D et al (2021) Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation. Comput Biol Med 135:104568. https://doi.org/10.1016/j.compbiomed.2021.104568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins Struct Funct Bioinform 17:412–425. https://doi.org/10.1002/prot.340170408

    Article  CAS  Google Scholar 

  30. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  31. Bowers KJ, Chow DE, Xu H, et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC ’06: proceedings of the 2006 ACM/IEEE conference on supercomputing, p 43

  32. Hughes SJ, Johnston LH, de Carlos A, Smith GL (1991) Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae. J Biol Chem 266:20103–20109. https://doi.org/10.1016/S0021-9258(18)54896-1

    Article  CAS  PubMed  Google Scholar 

  33. Colinas RJ, Goebel SJ, Davis SW et al (1990) A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. Virology 179:267–275. https://doi.org/10.1016/0042-6822(90)90295-3

    Article  CAS  PubMed  Google Scholar 

  34. Wang YC, Burkhart WA, Mackey ZB et al (1994) Mammalian DNA ligase II is highly homologous with vaccinia DNA ligase. Identification of the DNA ligase II active site for enzyme-adenylate formation. J Biol Chem 269:31923–31928. https://doi.org/10.1016/S0021-9258(18)31783-6

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Moss B (1992) Immature viral envelope formation is interrupted at the same stage by lac operator-mediated repression of the vaccinia virus D13L gene and by the drug rifampicin. Virology 187:643–653. https://doi.org/10.1016/0042-6822(92)90467-4

    Article  CAS  PubMed  Google Scholar 

  36. Blasco R, Moss B (1991) Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J Virol 65:5910–5920. https://doi.org/10.1128/jvi.65.11.5910-5920.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirt P, Hiller G, Wittek R (1986) Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J Virol 58:757–764. https://doi.org/10.1128/jvi.58.3.757-764.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roper RL, Moss B (1999) Envelope formation is blocked by mutation of a sequence related to the HKD phospholipid metabolism motif in the vaccinia virus F13L protein. J Virol 73:1108–1117. https://doi.org/10.1128/jvi.73.2.1108-1117.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Byrd CM, Hruby DE (2005) Development of an in vitro cleavage assay system to examine vaccinia virus I7L cysteine proteinase activity. Virol J 2:63. https://doi.org/10.1186/1743-422X-2-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Byrd CM, Bolken TC, Hruby DE (2002) The vaccinia virus I7L gene product is the core protein proteinase. J Virol 76:8973–8976. https://doi.org/10.1128/jvi.76.17.8973-8976.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katritch V, Byrd CM, Tseitin V et al (2007) Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches. J Comput Aided Mol Des 21:549–558. https://doi.org/10.1007/s10822-007-9138-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andrei G, Fiten P, Krečmerová M et al (2022) Poxviruses bearing DNA polymerase mutations show complex patterns of cross-resistance. Biomedicines 10:580. https://doi.org/10.3390/biomedicines10030580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vaidya ADB, Devasagayam TPA (2007) Current status of herbal drugs in India: an overview. J Clin Biochem Nutr 41:1–11. https://doi.org/10.3164/jcbn.2007001

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gong L, Wang C, Zhou H et al (2021) A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol Res 169:105690. https://doi.org/10.1016/j.phrs.2021.105690

    Article  CAS  PubMed  Google Scholar 

  45. Zheng X, Fu Y, Shi S-S et al (2019) Effect of forsythiaside A on the RLRs signaling pathway in the lungs of mice infected with the influenza A virus FM1 strain. Molecules 24:4219. https://doi.org/10.3390/molecules24234219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Law AH-Y, Yang CL-H, Lau AS-Y, Chan GC-F (2017) Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza A virus through reduction of viral M1 protein. J Ethnopharmacol 209:236–247. https://doi.org/10.1016/j.jep.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Wu Y, Chen C et al (2021) Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm Sin B 11:222–236. https://doi.org/10.1016/j.apsb.2020.10.002

    Article  CAS  PubMed  Google Scholar 

  48. Prajapati SN, Parmar KA (2011) Anti-viral and in-vitro free radical scavenging activity of leaves of Rubia cordifolia. Int J Phytomed 3:98–107

    Google Scholar 

  49. Isaacs CE, Xu W, Merz G et al (2011) Digallate dimers of (−)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrob Agents Chemother 55:5646–5653. https://doi.org/10.1128/aac.05531-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sahoo AK, Augusthian PD, Muralitharan I et al (2022) In silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs. Mol Divers. https://doi.org/10.1007/s11030-022-10550-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Patel M, Bazaid AS, Azhar EI et al (2023) Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2179547

    Article  PubMed  Google Scholar 

  52. Gulati P, Chadha J, Harjai K, Singh S (2022) Targeting envelope proteins of poxviruses to repurpose phytochemicals against monkeypox: an in silico investigation. Front Microbiol 13:1073419

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Contributions

SDG and RSPR planned the work. LP, SA, and SDG performed the work and along with RSPR wrote the manuscript. MGS helped in data curation. RBC helped in interpreting the results and gave critical inputs. RKV and PN gave inputs on phytochemicals and drug discovery. All authors contributed intellectually and edited/reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sudeep D. Ghate or R. Shyama Prasad Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The work is in compliance with ethical standards. No ethical clearance was necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghate, S.D., Pinto, L., Alva, S. et al. In silico identification of potential phytochemical inhibitors for mpox virus: molecular docking, MD simulation, and ADMET studies. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10797-2

Keywords

Navigation