Skip to main content
Log in

Rational design of FXR agonists: a computational approach for NASH therapy

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome, posing risks to cardiovascular and hepatic health worldwide. Non-alcoholic steatohepatitis (NASH) which is a severe form of NAFLD, has a global prevalence. Therapeutic targets for NASH include THR-β, GLP-1 receptor, PPARα/δ/γ, FGF21 analogs, and FXR, a bile acid nuclear receptor pivotal for regulating bile acid synthesis and excretion. Our study aims to design the non-steroidal FXR agonist for NASH treatment, as FXR’s role in the regulation of bile acid processes, rendering it a promising drug target for NASH therapy. Utilizing tropifexor as a reference molecule, we generated a shape-based pharmacophore model with seven features, identifying key binding requirements within the FXR active site. Virtual screening using this model, coupled with molecular docking studies, helped pinpoint potential ligands from diverse small molecule databases. Further analysis via MM/GBSA revealed 12 molecules with binding affinities comparable to tropifexor. Among them, DB15416 exhibited the lowest binding free energy and superior docking scores. To assess its dynamic stability, we subjected DB15416 to molecular dynamics simulations, confirming its suitability as a FXR agonist. These findings suggest that DB15416 holds promise as a FXR agonist for NASH treatment, which can be evaluated by experimental studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Reid AE (2001) Nonalcoholic steatohepatitis. Gastroenterology 121(3):710–723. https://doi.org/10.1053/gast.2001.27126

    Article  CAS  PubMed  Google Scholar 

  2. Abd El-Kader SM, El-Den Ashmawy EMS (2015) Non-alcoholic fatty liver disease: the diagnosis and management. World J Hepatol 7(6):846. https://doi.org/10.4254/wjh.v7.i6.846

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brown GT, Kleiner DE (2016) Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metab 65(8):1080–1086. https://doi.org/10.1016/j.metabol.2015.11.008

    Article  CAS  Google Scholar 

  4. Balp M-M, Krieger N, Przybysz R, Way N, Cai J, Zappe D et al (2019) The burden of non-alcoholic steatohepatitis (NASH) among patients from Europe: a real-world patient-reported outcomes study. JHEP Rep 1(3):154–161. https://doi.org/10.1016/j.jhepr.2019.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  5. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84. https://doi.org/10.1002/hep.28431

    Article  PubMed  Google Scholar 

  6. De A, Duseja A (2021) Nonalcoholic fatty liver disease: Indian perspective. Clin Liver Dis 18(3):158. https://doi.org/10.1002/cld.1141

    Article  Google Scholar 

  7. Chalmers J, Ban L, Leena KB, Edwards KL, Grove JL, Aithal GP et al (2019) Cohort profile: the Trivandrum non-alcoholic fatty liver disease (NAFLD) cohort. BMJ Open 9(5):e027244. https://doi.org/10.1136/bmjopen-2018-027244

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52(5):1836–1846. https://doi.org/10.1002/hep.24001

    Article  CAS  PubMed  Google Scholar 

  9. Alam S, Mustafa G, Alam M, Ahmad N (2016) Insulin resistance in development and progression of nonalcoholic fatty liver disease. World J Gastrointest Pathophysiol 7(2):211. https://doi.org/10.4291/wjgp.v7.i2.211

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  11. Chakaroun RM, Massier L, Kovacs P (2020) Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients 12(4):1082. https://doi.org/10.3390/nu12041082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H (2018) The effects of physical exercise on fatty liver disease. Gene Expr 18(2):89–101. https://doi.org/10.3727/105221617X15124844266408

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim D, Vazquez-Montesino LM, Li AA, Cholankeril G, Ahmed A (2020) Inadequate physical activity and sedentary behavior are independent predictors of nonalcoholic fatty liver disease. Hepatology 72(5):1556–1568. https://doi.org/10.1002/hep.31158

    Article  CAS  PubMed  Google Scholar 

  14. Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S et al (2020) The emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. https://doi.org/10.1111/apt.15738

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen M-M, Cai J-J, Yu Y, She Z-G, Li H (2019) Current and emerging approaches for nonalcoholic steatohepatitis treatment. Gene Expr 19(3):175–185. https://doi.org/10.3727/105221619X15536120524171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiang JY (2009) Bile acids: regulation of synthesis: thematic review series: bile acids. J Lipid Res 50(10):1955–1966. https://doi.org/10.1194/jlr.R900010-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kremoser C (2021) FXR agonists for NASH: How are they different and what difference do they make? J Hepatol 75(1):12–15

    Article  PubMed  Google Scholar 

  18. Kunne C, Acco A, Duijst S, de Waart DR, Paulusma CC, Gaemers I et al (1842) (2014) FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model. Biochim Biophys Acta Mol Basis Dis 5:739–746. https://doi.org/10.1016/j.bbadis.2014.02.004

    Article  CAS  Google Scholar 

  19. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF et al (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385(9972):956–965. https://doi.org/10.1016/s0140-6736(14)61933-4

    Article  CAS  PubMed  Google Scholar 

  20. Pedrosa M, Seyedkazemi S, Francque S, Sanyal A, Rinella M, Charlton M et al (2020) A randomized, double-blind, multicenter, phase 2b study to evaluate the safety and efficacy of a combination of tropifexor and cenicriviroc in patients with nonalcoholic steatohepatitis and liver fibrosis: study design of the TANDEM trial. Contemp Clin Trials 88:105889. https://doi.org/10.1016/j.cct.2019.105889

    Article  PubMed  Google Scholar 

  21. Camilleri M, Nord SL, Burton D, Oduyebo I, Zhang Y, Chen J et al (2020) Randomised clinical trial: significant biochemical and colonic transit effects of the farnesoid X receptor agonist tropifexor in patients with primary bile acid diarrhoea. Aliment Pharmacol Ther 52(5):808–820. https://doi.org/10.1111/apt.15967

    Article  CAS  PubMed  Google Scholar 

  22. Jiang L, Xiao D, Li Y, Dai S, Qu L, Chen X et al (2021) Structural basis of tropifexor as a potent and selective agonist of farnesoid X receptor. Biochem Biophys Res Commun 534:1047–1052. https://doi.org/10.1016/j.bbrc.2020.10.039

    Article  CAS  PubMed  Google Scholar 

  23. Traussnigg S, Halilbasic E, Hofer H, Munda P, Stojakovic T, Fauler G et al (2021) Open-label phase II study evaluating safety and efficacy of the non-steroidal farnesoid X receptor agonist PX-104 in non-alcoholic fatty liver disease. Wien Klin Wochenschr 133:441–451. https://doi.org/10.1007/s00508-020-01735-5

    Article  CAS  PubMed  Google Scholar 

  24. Radreau P, Joly S, Dubos C, Vonderscher J, Scalfaro P, Meldrum E, Darteil R (2019) Vitro and in vivo characterization of Eyp001 a novel, potent and selective Fxr agonist now in a phase 2 clinical trial in Nash. Hepatology 70:1267A-1267A

    Google Scholar 

  25. Scrödinger Release S.2 (2021) Protein preparation wizard. Impact. Epik, Schrödinger, New York

  26. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67(5):370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x

    Article  CAS  PubMed  Google Scholar 

  27. Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49(10):2356–2368. https://doi.org/10.1021/ci900212v

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35(suppl_1):D198–D201. https://doi.org/10.1093/nar/gkl999

    Article  CAS  PubMed  Google Scholar 

  29. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  30. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  31. Major LL, Smith TK (2011) Screening the MayBridge rule of 3 fragment library for compounds that interact with the Trypanosoma brucei myo-inositol-3-phosphate synthase and/or show trypanocidal activity. Mol Biol Int 2011:389364. https://doi.org/10.4061/2011/389364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865. https://doi.org/10.1038/nature03197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  34. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandna N, Kumari K, Sharma C, Vijjulatha M, Kapoor J, Sharma P (2015) QM/MM docking strategy and prime/MM-GBSA calculation of celecoxib analogues as N-myristoyltransferase inhibitors. Virol Mycol 4:1–8. https://doi.org/10.4172/2161-0517.1000141

    Article  CAS  Google Scholar 

  36. Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49(16):4805–4808. https://doi.org/10.1021/jm060522a

    Article  CAS  PubMed  Google Scholar 

  37. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  38. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  39. Moussa N, Hassan A, Gharaghani S (2021) Pharmacophore model, docking, QSAR, and molecular dynamics simulation studies of substituted cyclic imides and herbal medicines as COX-2 inhibitors. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06605

    Article  PubMed  PubMed Central  Google Scholar 

  40. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE 10(3):e0119264. https://doi.org/10.1371/journal.pone.0119264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wohlert M, Benselfelt T, Wågberg L, Furó I, Berglund LA, Wohlert J (2022) Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose. https://doi.org/10.1007/s10570-021-04325-4

    Article  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to the Director, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, New Delhi, Government of India for providing the provision to work.

Funding

This project was not funded from any organization.

Author information

Authors and Affiliations

Authors

Contributions

The concept of the study has been designed by the MES. The data collection and study were performed by AG. The manuscript was written by AG and corrected by SK. All authors have thoroughly reviewed the manuscript.

Corresponding author

Correspondence to Masilamani Elizabeth Sobhia.

Ethics declarations

Competing interests

All authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3169 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhe, A., Kumari, S. & Elizabeth Sobhia, M. Rational design of FXR agonists: a computational approach for NASH therapy. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10766-9

Keywords

Navigation