Skip to main content

Advertisement

Log in

Ligand-based designing of DPP-4 inhibitors via hybridization; synthesis, docking, and biological evaluation of pyridazine-acetohydrazides

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of novel pyridazine-acetohydrazide hybrids were designed, synthesized, and evaluated for their in vitro and in vivo antihyperglycemic activity. In this context, pyridazine-acetohydrazides (6a6p) were synthesized by coupling substituted aldehyde with 2-(5-cyano-6-oxo-3,4-diphenylpyridazine-1-6H-yl) acetohydrazide, which was prepared via the reaction of pyridazine ester with hydrazine hydrate. The molecular docking study was carried out to examine the binding affinities and interaction of designed compounds against the DPP-4 enzyme. Compounds 6e, 6f, 6l, and 6n exhibited interaction with active residue. In silico ADMET properties, and toxicity studies corroborated that compounds were found to have good bioavailability and less toxic. The synthesized compounds were further estimated for in vitro DPP-4 activity. Compounds 6e and 6l were found as the most effective DPP-4 inhibitor in this series with IC50 values (6.48, 8.22 nM) when compared with sitagliptin (13.02 nM). According to the toxicity assay compound, 6l showed very less toxicity at a higher concentration so further selected for the in vivo antihyperglycemic activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27:5–10. https://doi.org/10.2337/diacare.27.2007.S5

    Article  Google Scholar 

  2. American Diabetes A (2009) Diagnosis, and classification of diabetes mellitus. Diabetes Care 32:62–67. https://doi.org/10.2337/dc09-S062

    Article  Google Scholar 

  3. Reusch JE, Manson JE (2017) Management of type 2 diabetes in 2017: getting to goal. JAMA 317:1015–1016. https://doi.org/10.1001/jama.2017.0241

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sebokova E, Christ AD, Boehringer M, Mizrahi J (2007) Dipeptidyl peptidase IV inhibitors: the next generation of new promising therapies for the management of type 2 diabetes. Curr Top Med Chem 7:547–555. https://doi.org/10.2174/156802607780091019

    Article  CAS  PubMed  Google Scholar 

  5. Arun C, Chitharanjan D, Sena RDV, Shashank K, Aditya C, Rahul R, Asween M, Nawal Singh S (2017) Clinical Review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol 8:6. https://doi.org/10.3389/fendo.2017.00006

    Article  Google Scholar 

  6. Monika G, Sarbjot S, Pun G (2009) Dipeptidyl Peptidase-4 Inhibitors: a new approach in diabetes treatment. Int J Drug Dev & Res 1(1):146–156

    Google Scholar 

  7. Dallumal RM, Chua SS, Wu DB-C, Vethakkan SR (2015) Sitagliptin: is it effective in routine clinical practice. Int J Endocrinol 2015:950571. https://doi.org/10.1155/2015/950571

    Article  Google Scholar 

  8. White JR (2011) Alogliptin for the treatment of type 2 diabetes. Drugs Today 47(2):99–107. https://doi.org/10.1358/dot.2011.47.2.1583163

    Article  CAS  Google Scholar 

  9. McKeage K (2015) Trelagliptin: first global approval. Drugs 75:1161–1164. https://doi.org/10.1007/s40265-015-0431-9

    Article  CAS  PubMed  Google Scholar 

  10. Zhong J, Gong Q, Goud A, Srinivasamaharaj S, Rajagopalan S (2015) Recent advances in dipeptidyl-peptidase-4 inhibition therapy: lessons from the bench and Clinical Trials. J Diabetes Res 14:606031. https://doi.org/10.1155/2015/606031

    Article  Google Scholar 

  11. Rai SK, Khanam S, Khanna RS, Tewari AK (2014) Cascade synthesis of 2-pyridones using acrylamides and ketones. RSC Adv 4:44141–44145. https://doi.org/10.1039/c4ra06619g

    Article  CAS  Google Scholar 

  12. Rai SK, Singh P, Kumar R, Tewari AK, Hostaš J, Gnanasekaran R, Hobza P (2016) Experimental and theoretical study for the assessment of the conformational stability of polymethylene-bridged heteroaromatic dimers: a case of unprecedented folding. Cryst Growth Des 16(3):1176–1180. https://doi.org/10.1021/acs.cgd.5b01807

    Article  CAS  Google Scholar 

  13. Radwan MAA, Alshubramy MA, Abdel-Motaal M, Hemdan BA, El-Kady DS (2020) Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives. Bioorg Chem 96:103516. https://doi.org/10.1016/j.bioorg.2019.103516

    Article  CAS  PubMed  Google Scholar 

  14. Elmeligie S, Ahmed EM, Abuel-Maaty SM, Zaitone S-B, Mikhail DS (2017) Design and synthesis of pyridazine containing compounds with promising anticancer activity. Chem Pharm Bull 65(3):236–247. https://doi.org/10.1248/cpb.c16-00532

    Article  CAS  Google Scholar 

  15. El-Ansary AK, Kamal AM, Al-Ghorafi MA (2013) Design, and synthesis of some thieno[2,3-c] pyridazine derivatives of expected anticancer activity. Med Chem Res 22:2589–2601. https://doi.org/10.1007/s00044-012-0258-9

    Article  CAS  Google Scholar 

  16. Loksha YM, Abd-Alhasee MM (2020) Synthesis and biological screening of some novel 6-substituted 2-alkylpyridazin-3(2H)-ones as anti-inflammatory and analgesic agents. Arch Pharm Chem Life Sci. https://doi.org/10.1002/ardp.201900295

    Article  Google Scholar 

  17. Farghaly AM, AboulWafa OM, Elshaier YAM, Badawi WA, Haridy HH, Mubarak HAE (2019) Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med Chem Res 28(3):360–379. https://doi.org/10.1007/s00044-019-02289-6

    Article  CAS  Google Scholar 

  18. Dong ZQ, Liu XM, Wei CX, Quan ZS (2015) Design, synthesis of 6-substituted-pyrido[3,2-d] pyridazine derivatives with anticonvulsant activity. Med Chem 11(6):595–601. https://doi.org/10.2174/1573406411666150313152925

    Article  CAS  PubMed  Google Scholar 

  19. Singh B, Bhatia R, Pani B, Gupta D (2020) Synthesis, crystal structures and biological evaluation of new pyridazine derivatives. J Mol Struct 1200:127084. https://doi.org/10.1016/j.molstruc.2019.127084

    Article  CAS  Google Scholar 

  20. Zaoui Y, Ramli Y, Tan SL, Tiekink ERT, Chemlal L, Mague JT, Jamal Taoufik ME, Faouzi A, Ansar M (2021) Synthesis, structural characterization and theoretical studies of a novel pyridazine derivative: Investigations of anti-inflammatory activity and inhibition of α-glucosidase. J Mol Struct 1234:130177. https://doi.org/10.1016/j.molstruc.2021.130177

    Article  CAS  Google Scholar 

  21. Deeb A, El-Eraky WI, El-Awdan SA, Mahgoub S (2013) Pyridazine and its related compounds. Part 34. Hypoglycemic and hypolipidemic activity of some novel condensed pyridazine sulfonamides. Med Chem Res 23:34–41

    Article  Google Scholar 

  22. Adib M, Peytam F, Rahmanian-Jazi M, Mohammadi-Khanaposhtani M, Mahernia S, Bijanzadeh HR, Jahani M, Imanparast S, Faramarzi MA, Mahdavi M, Larijani B (2018) Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J Chem 42:17268–17278. https://doi.org/10.1039/C8NJ02495B

    Article  CAS  Google Scholar 

  23. Tsuji T, Yamaguchi M, Kuroyanagi J, Furuzono S, Konishi M, Terayama K, Tanaka J, Saito M, Kobayashi Y (2019) Discovery of novel pyridazine derivatives as glucose transporter type 4 (GLUT4) translocation activators. Bioorg Med Chem Lett 29(14):1785–1790. https://doi.org/10.1016/j.bmcl.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  24. Moghimi S, Toolabi M, Salarinejad S, Firoozpour L, Ebrahimi SES, Safari F, Mojtabavi S, Faramarzi MA, Foroumadi A (2020) Design and synthesis of novel pyridazine N-aryl acetamides: in-vitro evaluation of α-glucosidase inhibition, docking, and kinetic studies. Bioorg Chem 102:104071. https://doi.org/10.1016/j.bioorg.2020.104071

    Article  CAS  PubMed  Google Scholar 

  25. Adib M, Peytam F, Rahmanian-Jazi M, Mohammadi-Khanaposhtani M, Mahernia S (2018) Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J Chem 42:17268–17278. https://doi.org/10.1039/C8NJ02495B

    Article  CAS  Google Scholar 

  26. Bindu B, Vijayalakshmi S, Manikandan A (2020) Synthesis and discovery of triazolo-pyridazine-6-yl-substituted piperazines as effective anti-diabetic drugs; evaluated over dipeptidyl peptidase-4 inhibition mechanism and insulinotropic activities. Eur J Med Chem 187:111912. https://doi.org/10.1016/j.ejmech.2019.111912

    Article  CAS  PubMed  Google Scholar 

  27. Rai SK, Khanam S, Khanna RS, Tewari AK (2015) Design and synthesis of 2-pyridone based flexible dimers and their conformational study through X-ray diffraction and density functional theory: perspective of cyclooxygenase-2 inhibition. Cryst Growth Des 15(3):1430–1439. https://doi.org/10.1021/cg501793v

    Article  CAS  Google Scholar 

  28. Kumar R, Gaurav A, Pal S, Kumar K, Sridhar B, Tewari A (2017) Reverse intramolecular stacking in o-xylene bridge symmetrical dimers of 2-thiopyridine derivative: assessment of the conformational stability. Chemistry Select 2:3249–3255. https://doi.org/10.1002/slct.201700269

    Article  CAS  Google Scholar 

  29. Dubey R, Singh P, Singh AK, Yadav MK, Swati D, Vinayak M, Puerta C, Valerga P, Ravi Kumar K, Sridhar B, Tewari AK (2014) Polymorphic signature of the anti-inflammatory activity of 2,2′-{[1,2-phenylenebis(methylene)]bis(sulfanediyl)}bis(4,6-dimethylnicotinonitrile). Cryst Growth Des 14(3):1347–1356. https://doi.org/10.1021/cg401842y

    Article  CAS  Google Scholar 

  30. Rai SK, Singh P, Khanam S, Tewari AK (2016) Polymorphic study and anti-inflammatory activity of a 3-cyano-2-pyridone based flexible model. New J Chem 40:5577–5587. https://doi.org/10.1039/C5NJ03683F

    Article  CAS  Google Scholar 

  31. Kumar R, Singh P, Gaurav A, Yadav P, Khanna RS, Tewari AK (2016) Synthesis of diphenyl pyridazinone-based flexible system for conformational studies through weak noncovalent interactions: application in DNA binding. J Chem Sci 128(4):555–564. https://doi.org/10.1007/s12039-016-1059-3

    Article  CAS  Google Scholar 

  32. Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Wang X (2011) Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85(6):1010–1016. https://doi.org/10.1016/j.chemosphere.2011.07.024

    Article  CAS  PubMed  Google Scholar 

  33. Zhou S, Dong Q, Li S, Guo J, Wang X, Zhu G (2009) Developmental toxicity of cartapon zebrafish embryos. Aquat Toxicol 95:339–346. https://doi.org/10.1016/j.aquatox.10.006

    Article  CAS  PubMed  Google Scholar 

  34. Scholz S, Fischer S, Gundel U, Kuster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15:394–404. https://doi.org/10.1007/s11356-008-0018-z

    Article  CAS  PubMed  Google Scholar 

  35. Singh P, Kumar R, Yadav B, Khanna R, Tewari A (2014) CCSO nano catalyzed solid-phase synthesis of 3-oxo-5,6-disubstituted-2,3-dihydropyridazine-4-carbonitrile. RSC Adv 4:51239–51243. https://doi.org/10.1039/C4RA06640E

    Article  CAS  Google Scholar 

  36. El-Dean AMK, Geies AA, Radwan SM (1999) Studies of pyridazine derivatives: synthesis of pyrrolo[2,3-c]pyridazine and related compounds. Bull Polish Acad Sci Chem 47(2):135–142

    CAS  Google Scholar 

  37. Lakshmithendral K, Saravanan K, Elancheran R, Archana K, Manikandan N, Arjun HA, Ramanathan M, Lokanath NK, Kabilan S (2019) Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur J Med Chem 168:1–10. https://doi.org/10.1016/j.ejmech.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  38. Li N, Wang L-J, Jiang Bo, Guo S-J, Li X-Q, Chen X-C, Luo J, Li C, Wang Yi, Shi D-Y (2018) Design, synthesis and biological evaluation of novel pyrimidinedione derivatives as DPP-4 inhibitors. Bioorg Med Chem Lett 28(12):2131–2135. https://doi.org/10.1016/j.bmcl.2018.05.022

    Article  CAS  PubMed  Google Scholar 

  39. Patel BD, Bhadada SV, Ghate MD (2017) Design, synthesis and anti-diabetic activity of triazolotriazine derivatives as dipeptidyl peptidase-4 inhibitors. Bioorg Chem 72:345–358. https://doi.org/10.1016/j.bioorg.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  40. Bindu B, Vijayalakshmi S, Manikandan A (2020) Synthesis and discovery of triazolo-pyridazine-6-yl-substituted piperazines as effective anti-diabetic drugs; evaluated over dipeptidyl peptidase-4 inhibition mechanism and insulinotropic activities. Eur J Med Chem 187(1):111912. https://doi.org/10.1016/j.ejmech.2019.111912

    Article  CAS  PubMed  Google Scholar 

  41. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a web server for the prediction of toxicity of chemicals. Nucleic Acids Res 46:257–263. https://doi.org/10.1093/nar/gky318

    Article  CAS  Google Scholar 

  42. Sripriya N, Ranjith Kumar M, Ashwin Karthick N, Bhuvaneswari S, Udaya Prakash NK (2019) In silico evaluation of multispecies toxicity of natural compounds. Drug Chem Toxicol 21:1–7. https://doi.org/10.1080/01480545.2019.1614023

    Article  CAS  Google Scholar 

  43. Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Hu F, Long Y, Xia Y, Lu C, Song L, Wang S, Wang X (2011) Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 5(6):1010–1016. https://doi.org/10.1016/j.chemosphere.2011.07.024

    Article  CAS  Google Scholar 

  44. Hussaina F, Khan Z, Jana MS, Ahmada S, Ahmad A (2019) Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo anti-diabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg Chem 91:103128. https://doi.org/10.1016/j.bioorg.2019.103128

    Article  CAS  Google Scholar 

  45. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ahn JH, Shin MS, Jun MA, Jung SH, Kang SK, Kim KR, Rhee SD, Kang NS, Kim SY, Sohn SK, Kim SG, Jin MS, Lee JO, Cheon HG, Kim SS (2007) Synthesis, biological evaluation and structural determination of β-aminoacyl-containing cyclic hydrazine derivatives as dipeptidyl peptidase-4 inhibitors. Bioorg Med Chem Lett 17(9):26228. https://doi.org/10.1016/j.bmcl.2007.01.111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Molecular Endocrinology and Toxicology Lab (MET Lab), Department of Zoology, Banaras Hindu University for providing the facility for biological studies. All animal studies performed at MET lab were supported by SERB (ECR/2017/000685) and UGC-BSR, New Delhi (F.30-370/2017-BSR) Grant to RKS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Kumar Singh or Ashish Kumar Tewari.

Ethics declarations

Competing Interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14927 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nidhar, M., Kumar, V., Mahapatra, A. et al. Ligand-based designing of DPP-4 inhibitors via hybridization; synthesis, docking, and biological evaluation of pyridazine-acetohydrazides. Mol Divers 27, 2729–2740 (2023). https://doi.org/10.1007/s11030-022-10577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10577-4

Keywords

Navigation