Skip to main content
Log in

Multimodal multi-task deep neural network framework for kinase–target prediction

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Kinase plays a significant role in various disease signaling pathways. Due to the highly conserved sequence of kinase family members, understanding the selectivity profile of kinase inhibitors remains a priority for drug discovery. Previous methods for kinase selectivity identification use biochemical assays, which are very useful but limited by the protein available. The lack of kinase selectivity can exert benefits but also can cause adverse effects. With the explosion of the dataset for kinase activities, current computational methods can achieve accuracy for large-scale selectivity predictions. Here, we present a multimodal multi-task deep neural network model for kinase selectivity prediction by calculating the fingerprint and physiochemical descriptors. With the multimodal inputs of structure and physiochemical properties information, the multi-task framework could accurately predict the kinome map for selectivity analysis. The proposed model displays better performance for kinase–target prediction based on system evaluations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DTI:

Drug–target interactions

kNN:

K-nearest neighbor algorithm

MT-DNN:

Multi-task deep neural network

DNN:

Deep neural network

ReLU:

Rectified Linear Unit

MST-DNN:

Multimodal single-task deep neural network

QSAR:

Quantitative structure–activity relationship

MCC:

Matthews correlation coefficient

PCA:

Principal component analysis

CNN:

Convolutional neural network

References

  1. Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. Int J Mol Med 402:271–280. https://doi.org/10.3892/ijmm.2017.3036

    Article  CAS  Google Scholar 

  2. Zimmermann J (2009) Interview with Jürg Zimmermann, global head of oncology & exploratory chemistry at Novartis. Future Med Chem 18:1395–1398. https://doi.org/10.4155/Fmc.09.115

    Article  Google Scholar 

  3. Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schiöth HB (2021) Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2011:839–861. https://doi.org/10.1038/s41573-021-00252-y

    Article  CAS  Google Scholar 

  4. Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, Robbie G, Rahman A, Chen G, Staten A, Griebel D (2002) Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 810:3034–3038

    Google Scholar 

  5. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 3215886:263–266. https://doi.org/10.1126/science.1158140

    Article  CAS  Google Scholar 

  6. Peska L, Buza K, Koller J (2017) Drug-target interaction prediction: a Bayesian ranking approach. Comput Methods Programs Biomed 152:15–21. https://doi.org/10.1016/j.cmpb.2017.09.003

    Article  PubMed  Google Scholar 

  7. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2413:i232–i240. https://doi.org/10.1093/bioinformatics/btn162

    Article  CAS  Google Scholar 

  8. Chen ZH, You ZH, Guo ZH, Yi HC, Luo GX, Wang YB (2020) Prediction of drug-target interactions from multi-molecular network based on deep walk embedding model. Front Bioeng Biotechnol 8:338. https://doi.org/10.3389/fbioe.2020.00338

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, Lu H (2017) Deep-learning-based drug–target interaction prediction. J Proteome Res 164:1401–1409. https://doi.org/10.1021/acs.jproteome.6b00618

    Article  CAS  Google Scholar 

  10. Chen R, Liu X, Jin S, Lin J, Liu J (2018) Machine learning for drug-target interaction prediction. Molecules 239:2208. https://doi.org/10.3390/molecules23092208

    Article  CAS  Google Scholar 

  11. Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T (2020) DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 119:2531–2557. https://doi.org/10.1039/c9sc03414e

    Article  CAS  Google Scholar 

  12. Wan F, Zhu Y, Hu H, Dai A, Cai X, Chen L, Gong H, Xia T, Yang D, Wang M-W (2019) DeepCPI: a deep learning-based framework for large-scale in silico drug screening. Genomics Proteomics Bioinf 175:478–495. https://doi.org/10.1016/j.gpb.2019.04.003

    Article  CAS  Google Scholar 

  13. Madhukar NS, Khade PK, Huang L, Gayvert K, Galletti G, Stogniew M, Allen JE, Giannakakou P, Elemento O (2019) A Bayesian machine learning approach for drug target identification using diverse data types. Nat Commun 101:5221. https://doi.org/10.1038/s41467-019-12928-6

    Article  CAS  Google Scholar 

  14. Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner JK, Ceulemans H, Clevert D-A, Hochreiter S (2018) Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem Sci 924:5441–5451. https://doi.org/10.1039/c8sc00148k

    Article  CAS  Google Scholar 

  15. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. https://doi.org/10.48550/arXiv.1201.0490

    Article  Google Scholar 

  16. Bajorath J (2001) Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. J Chem Inf Comput Sci 412:233–245. https://doi.org/10.1021/ci0001482

    Article  CAS  Google Scholar 

  17. Gao K, Nguyen DD, Sresht V, Mathiowetz AM, Tu M, Wei GW (2020) Are 2D fingerprints still valuable for drug discovery? Phys Chem Chem Phys 2216:8373–8390. https://doi.org/10.1039/d0cp00305k

    Article  CAS  Google Scholar 

  18. Thung KH, Wee CY (2018) A brief review on multi-task learning. Multimedia Tools Appl 7722:29705–29725. https://doi.org/10.1007/s11042-018-6463-x

    Article  Google Scholar 

  19. Wenzel J, Matter H, Schmidt F (2019) Predictive multitask deep neural network models for ADME-Tox properties: learning from large data sets. J Chem Inf Model 593:1253–1268. https://doi.org/10.1021/acs.jcim.8b00785

    Article  CAS  Google Scholar 

  20. Xu Y, Ma J, Liaw A, Sheridan RP, Svetnik V (2017) Demystifying multitask deep neural networks for quantitative structure–activity relationships. J Chem Inf Model 5710:2490–2504. https://doi.org/10.1021/acs.jcim.7b00087

    Article  CAS  Google Scholar 

  21. Chollet F (2018) Keras: The python deep learning library. Astrophysics Source Code Library: ascl 1806:022

    Google Scholar 

  22. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 131:21–27. https://doi.org/10.1109/TIT.1967.1053964

    Article  Google Scholar 

  23. Korotcov A, Tkachenko V, Russo DP, Ekins S (2017) Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm 1412:4462–4475. https://doi.org/10.1021/acs.molpharmaceut.7b00578

    Article  CAS  Google Scholar 

  24. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M (2016) Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint https://doi.org/10.48550/arXiv.1603.04467

  25. Klopman G, Kalos AN (1985) Causality in structure—activity studies. J Comput Chem 65:492–506. https://doi.org/10.1002/jcc.540060520

    Article  Google Scholar 

  26. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 2911:1046–1051. https://doi.org/10.1038/nbt.1990

    Article  CAS  Google Scholar 

  27. Li X, Li Z, Wu X, Xiong Z, Yang T, Fu Z, Liu X, Tan X, Zhong F, Wan X (2019) Deep learning enhancing kinome-wide polypharmacology profiling: model construction and experiment validation. J Med Chem 6316:8723–8737. https://doi.org/10.1021/acs.jmedchem.9b00855

    Article  CAS  Google Scholar 

  28. Zhao J, Zhang D, Zhang W, Stashko MA, DeRyckere D, Vasileiadi E, Parker RE, Hunter D, Liu Q, Zhang Y (2018) Highly selective MERTK inhibitors achieved by a single methyl group. J Med Chem 6122:10242–10254. https://doi.org/10.1021/acs.jmedchem.8b01229

    Article  CAS  Google Scholar 

  29. Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varnum BC, Henson PM, Graham DK (2007) A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 1093:1026–1033. https://doi.org/10.1182/blood-2006-05-021634

    Article  CAS  Google Scholar 

  30. Hua Y, Fang X, Xing G, Xu Y, Liang L, Deng C, Dai X, Liu H, Lu T, Zhang Y (2022) Effective reaction-based de novo strategy for kinase targets: a case study on MERTK inhibitors. J Chem Inf Model 627:1654–1668. https://doi.org/10.1021/acs.jcim.2c00068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 81973182, 82073704, 81803370) State Key Laboratory Innovation Research and Cultivation Fund (Grant No. SKLNMZZCX201812), and “Double World-classes” Construction Program of China Pharmaceutical University (Grant No. CPU2018GF02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yadong Chen, Yanmin Zhang or Yulei Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 86 KB)

Supplementary file2 (XLSX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Y., Luo, L., Qiu, H. et al. Multimodal multi-task deep neural network framework for kinase–target prediction. Mol Divers 27, 2491–2503 (2023). https://doi.org/10.1007/s11030-022-10565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10565-8

Keywords

Navigation