Skip to main content
Log in

Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A library of piperonylic acid-derived hydrazones possessing variable aryl moiety was synthesized and investigated for their multifunctional properties against cholinesterases (ChEs) and monoamine oxidases (MAOs). The in vitro enzymatic assay results revealed that the tested hydrazones have exhibited excellent cholinesterase inhibition profile. Compound 4i, (E)-N'-(2,3-dichlorobenzylidene)benzo[d][1,3]dioxole-5-carbohydrazide showed promising dual inhibitory profile against AChE (0.048 ± 0.007 μM), BChE (0.89 ± 0.018 μM), and MAO-B (0.95 ± 0.12 μM) enzymes. SAR exploration revealed that the truncation of the linker connecting both the aryl binding sites of the semicarbazone scaffold, by one atom, has relatively suppressed the AChE inhibitory potential. Kinetic studies disclosed that the compound 4i reversibly inhibited AChE enzyme in a competitive manner (Ki = 8.0 ± 0.076 nM), while it displayed a non-competitive and reversible inhibition profile against MAO-B (Ki = 9.6 ± 0.021 µM). Moreover, molecular docking studies of synthesized compounds against ChEs and MAOs provided the crucial molecular features that enable their close association and interaction with the target enzymes. All atomistic simulation studies confirmed the stable association of compound 4i within the active sites of AChE and MAO-B. In addition, theoretical ADMET prediction studies demonstrated the acceptable pharmacokinetic profile of the dual inhibitors. In summary, the attempted lead simplification study afforded a potent dual ChE–MAO-B inhibitor compound that merits further investigation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walczak-Nowicka ŁJ, Herbet M (2021) Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms22179290

    Article  PubMed  PubMed Central  Google Scholar 

  2. Singh J, Kour K, Jayaram MB (2012) Acetylcholinesterase inhibitors for schizophrenia. Cochrane Database Syst Rev 1(1):CD007967

    PubMed  Google Scholar 

  3. Massoulie J et al (1993) Chapter 15: Structure and functions of acetylcholinesterase and butyrylcholinesterase. In: Cuello AC (ed) Progress in brain research. Elsevier, Amsterdam, pp 139–146

    Google Scholar 

  4. Girard E et al (2007) Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sci 80(24–25):2380–2385. https://doi.org/10.1016/j.lfs.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  5. Dvir H et al (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1):10–22. https://doi.org/10.1016/j.cbi.2010.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muller T, Riederer P, Grünblatt E (2017) Determination of monoamine oxidase A and B activity in long-term treated patients with Parkinson disease. Clin Neuropharmacol. https://doi.org/10.1097/WNF.0000000000000233

    Article  PubMed  Google Scholar 

  7. Tripathi RKP, Ayyannan SR (2019) Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: an overview and update. Med Res Rev 39(5):1603–1706. https://doi.org/10.1002/med.21561

    Article  CAS  PubMed  Google Scholar 

  8. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82. https://doi.org/10.1080/01616412.2016.1251711

    Article  CAS  PubMed  Google Scholar 

  9. Fisar Z (2016) Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 69:112–124. https://doi.org/10.1016/j.pnpbp.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Ayyannan SR (2022) Identification of new small molecule monoamine oxidase-B inhibitors through pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2112082

    Article  PubMed  Google Scholar 

  11. Borroni E et al (2017) Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther 362(3):413–423. https://doi.org/10.1124/jpet.117.241653

    Article  CAS  PubMed  Google Scholar 

  12. Cevik UA et al (2020) Multifunctional quinoxaline-hydrazone derivatives with acetylcholinesterase and monoamine oxidases inhibitory activities as potential agents against Alzheimer’s disease. Med Chem Res 29(6):1000–1011. https://doi.org/10.1007/s00044-020-02541-4

    Article  CAS  Google Scholar 

  13. Jeong GS et al (2020) Selected 1,3-benzodioxine-containing chalcones as multipotent oxidase and acetylcholinesterase inhibitors. ChemMedChem 15(23):2257–2263. https://doi.org/10.1002/cmdc.202000491

    Article  CAS  PubMed  Google Scholar 

  14. Yamali C et al (2021) Phenothiazine-based chalcones as potential dual-target inhibitors toward cholinesterases (AChE, BuChE) and monoamine oxidases (MAO-A, MAO-B). J Heterocycl Chem 58(1):161–171. https://doi.org/10.1002/jhet.4156

    Article  CAS  Google Scholar 

  15. Vishnu MS et al (2019) Experimental and computational evaluation of piperonylic acid derived hydrazones bearing isatin moieties as dual inhibitors of cholinesterases and monoamine oxidases. ChemMedChem 14(14):1359–1376. https://doi.org/10.1002/cmdc.201900277

    Article  CAS  PubMed  Google Scholar 

  16. Plazas E et al (2020) Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg Chem 98:103722. https://doi.org/10.1016/j.bioorg.2020.103722

    Article  CAS  PubMed  Google Scholar 

  17. Kumar V et al (2020) Design, synthesis and evaluation of O-pentyne substituted diphenylpyrimidines as monoamine oxidase and acetylcholinesterase inhibitors. ChemistrySelect 5(27):8021–8032. https://doi.org/10.1002/slct.202002425

    Article  CAS  Google Scholar 

  18. Ramsay RR (2016) Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 69:81–89. https://doi.org/10.1016/j.pnpbp.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  19. Marco-Contelles J et al (2016) ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front Neurosci 10:294. https://doi.org/10.3389/fnins.2016.00294

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bautista-Aguilera OM et al (2017) Multitarget-directed ligands combining cholinesterase and monoamine oxidase inhibition with histamine H3R antagonism for neurodegenerative diseases. Angew Chem Int Ed 56(41):12765–12769. https://doi.org/10.1002/anie.201706072

    Article  CAS  Google Scholar 

  21. Xu Y et al (2019) Rational design of novel selective dual-target inhibitors of acetylcholinesterase and monoamine oxidase B as potential anti-Alzheimer’s disease agents. ACS Chem Neurosci 10(1):482–496. https://doi.org/10.1021/acschemneuro.8b00357

    Article  CAS  PubMed  Google Scholar 

  22. Joubert J et al (2017) Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem 125:853–864. https://doi.org/10.1016/j.ejmech.2016.09.041

    Article  CAS  PubMed  Google Scholar 

  23. Pan L-F, Wang X-B, Xie S-S, Li SY, Kong LY (2014) Multitarget-directed resveratrol derivatives: anti-cholinesterases, anti-β-amyloid aggregation and monoamine oxidase inhibition properties against Alzheimer’s disease. MedChemComm 5(5):609–616. https://doi.org/10.1039/C3MD00376K

    Article  CAS  Google Scholar 

  24. Verma G et al (2014) A review exploring biological activities of hydrazones. J Pharm Bioallied Sci 6(2):69–80

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Oliveira Carneiro Brum J et al (2020) Synthesis and biological activity of hydrazones and derivatives: a review. Mini Rev Med Chem 20(5):342–368. https://doi.org/10.2174/1389557519666191014142448

    Article  CAS  PubMed  Google Scholar 

  26. Rollas S, Kucukguzel SG (2007) Biological activities of hydrazone derivatives. Molecules 12(8):1910–1939. https://doi.org/10.3390/12081910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ali MR et al (2012) Review of biological activities of hydrazones. Indones J Pharm 23(4):193–202

    Google Scholar 

  28. Tripathi RKP, Rai GK, Ayyannan SR (2016) Exploration of a library of 3,4-(methylenedioxy)aniline-derived semicarbazones as dual inhibitors of monoamine oxidase and acetylcholinesterase: design, synthesis, and evaluation. ChemMedChem 11(11):1145–1160. https://doi.org/10.1002/cmdc.201600128

    Article  CAS  PubMed  Google Scholar 

  29. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of autodock. J Mol Recognit 9(1):1–5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1%3c1::AID-JMR241%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  30. Lee S et al (2003) The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. euro QSAR 2002 - Designing Drugs and Crop Protectants: Processes Problems and Solutions 2003. pp 418–420

  31. Siddiqa A et al (2014) Synthesis and antibacterial evaluation of 2-(1, 3-benzodioxol-5-ylcarbonyl) arylsulfonohydrazide derivatives. Trop J Pharm Res 13(10):1689–1696. https://doi.org/10.4314/tjpr.v13i10.17

    Article  CAS  Google Scholar 

  32. Cheung J et al (2013) Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett 4(11):1091–1096. https://doi.org/10.1021/ml400304w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kosak U et al (2016) Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Sci Rep 6(1):39495. https://doi.org/10.1038/srep39495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warren GL et al (2012) Essential considerations for using protein–ligand structures in drug discovery. Drug Discov Today 17(23):1270–1281. https://doi.org/10.1016/j.drudis.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  35. Bowers KJ et al (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. p 43 https://doi.org/10.1109/SC.2006.54

  36. Tripathi RKP et al (2018) Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: effect of the size of aryl binding site. J Enzyme Inhib Med Chem 33(1):37–57. https://doi.org/10.1080/14756366.2017.1389920

    Article  CAS  PubMed  Google Scholar 

  37. Tripathi RKP, Krishnamurthy S, Ayyannan SR (2016) Discovery of 3-hydroxy-3-phenacyloxindole analogues of isatin as potential monoamine oxidase inhibitors. ChemMedChem 11(1):119–132. https://doi.org/10.1002/cmdc.201500443

    Article  CAS  PubMed  Google Scholar 

  38. Son S-Y et al (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci 105(15):5739–5744. https://doi.org/10.1016/j.bmc.2021.116558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Binda C et al (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 50(23):5848–5852. https://doi.org/10.1021/jm070677y

    Article  CAS  PubMed  Google Scholar 

  40. Jaiswal S, Tripathi RKP, Ayyannan SR (2018) Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: synthesis and evaluation. Biomed Pharmacother 107:1611–1623. https://doi.org/10.1016/j.biopha.2018.08.125

    Article  CAS  PubMed  Google Scholar 

  41. Singh SK et al (2014) The flavonoid derivative 2-(4′-benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against aβ42-induced neurodegeneration in transgenic drosophila: insights from in silico and in vivo studies. Neurotox Res 26(4):331–350. https://doi.org/10.1007/s12640-014-9466-z

    Article  CAS  PubMed  Google Scholar 

  42. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  43. Oprea TI (2000) Property distribution of drug-related chemical databases*. J Comput Aided Mol Des 14:251–264. https://doi.org/10.1023/A:1008130001697

    Article  CAS  PubMed  Google Scholar 

  44. Kummerle AE et al (2009) Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N-acylhydrazone derivatives. Eur J Med Chem 44(10):4004–4009. https://doi.org/10.1016/j.ejmech.2009.04.044

    Article  CAS  PubMed  Google Scholar 

  45. Lima PC et al (2000) Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur J Med Chem 35(2):187–203. https://doi.org/10.1016/S0223-5234(00)00120-3

    Article  CAS  PubMed  Google Scholar 

  46. Mazzone G, Bonina F, Formica F (1978) Some aroylhydrazones of halobenzaldehydes and halogen-substituted 2,5-diaryl-1,3,4-oxadiazoles. Farmaco Sci 33(12):963–971

    CAS  PubMed  Google Scholar 

  47. Mazzone G, Arrigo Reina R (1973) Synthesis of 3,4-(methylenedioxy)-benzoic acid hydrazides and their antimonoaminoxidasic activity. Boll Chim Farm 112(1):35–44

    CAS  PubMed  Google Scholar 

  48. Pham VHP et al (2005) Synthesis, structures of 2,5-diaryl-1,3,4-oxadiazoles from safrole. Tap Chi Hoa Hoc 43(2):198–202

    CAS  Google Scholar 

  49. Devi J et al (2021) Design, synthesis, crystal structure, molecular docking studies of some diorganotin(IV) complexes derived from the piperonylic hydrazide Schiff base ligands as cytotoxic agents. J Mol Struct 1232:129992. https://doi.org/10.1016/j.molstruc.2021.129992

    Article  CAS  Google Scholar 

  50. Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74(2):443–450. https://doi.org/10.1016/0003-9861(58)90014-6

    Article  CAS  PubMed  Google Scholar 

  51. Jaiswal S, Ayyannan SR (2022) Discovery of isatin-based carbohydrazones as potential dual inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase. ChemMedChem 17(1):e202100559. https://doi.org/10.1002/cmdc.202100559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author (Pavan Kumar V.) is thankful to the Indian Institute of Technology (BHU) Varanasi, for providing a Teaching Assistantship. The support and the resources provided by ‘PARAM Shivay Facility’ under the National Supercomputing Mission, Government of India at the Indian Institute of Technology (BHU), Varanasi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Raja Ayyannan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5901 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.P., Vishnu, M.S., Kumar, S. et al. Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers 27, 2465–2489 (2023). https://doi.org/10.1007/s11030-022-10564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10564-9

Keywords

Navigation