Skip to main content
Log in

PEG-mediated synthesis, antibacterial, antifungal and antioxidant studies of some new 1,3,5-trisubstituted 2-pyrazolines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new series of 1,3,5-trisubstituted 2-pyrazoline derivatives (3a–l) are synthesized in good to excellent yields from the corresponding chalcones (1a–h) and acid hydrazides (2a–e) in polyethylene glycol-400 (PEG-400) as a green reaction medium. The newly synthesized 2-pyrazoline derivatives are screened for their antibacterial and antifungal activity. The synthesized trisubstituted pyrazolines displayed moderate to good antibacterial and antifungal properties as compared with the standard reference penicillin and fluconazole drugs. Additionally, the antioxidant potential of the 1,3,5-trisubstituted 2-pyrazolines is evaluated by OH and DPPH assay. The 1,3,5-trisubstituted 2-pyrazolines showed good radical scavenger activity and were found as good antioxidant agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Özkay Y, Tunali Y, Karaca H, Işikdaǧ I (2010) Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur J Med Chem 45:3293–3298. https://doi.org/10.1016/j.ejmech.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  2. Tahlan S, Kumar S, Ramasamy K et al (2019) Design, synthesis and biological profile of heterocyclic benzimidazole analogues as prospective antimicrobial and antiproliferative agents. BMC Chem 13:1–15. https://doi.org/10.1186/s13065-019-0567-x

    Article  CAS  Google Scholar 

  3. Carl L, Lars B (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf Rev 5:229–241. https://doi.org/10.1177/2042098614554919

    Article  Google Scholar 

  4. Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5:472–484. https://doi.org/10.3390/BIOM5020472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/J.EJMECH.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  6. Sadgir NV, Dhonnar SL, Jagdale BS, Sawant AB (2020) Synthesis, spectroscopic characterization, XRD crystal structure, DFT and antimicrobial study of (2E)-3-(2,6-dichlorophenyl)-1-(4-methoxyphenyl)-prop-2-en-1-one. SN Appl Sci 2:1376–1387. https://doi.org/10.1007/s42452-020-2923-9

    Article  CAS  Google Scholar 

  7. Sadgir NV, Dhonnar SL, Jagdale BS et al (2020) Synthesis, spectroscopic characterization, quantum chemical study and antimicrobial study of (2e) -3-(2, 6-dichlorophenyl) -1-(4-fluoro) -prop-2-en-1-one. Mater Sci Res India 17:281–293. https://doi.org/10.13005/msri/170311

    Article  CAS  Google Scholar 

  8. Sadgir NV, Dhonnar SL, Jagdale BS (2019) Review on synthesis and biological activity of chalcone. Int J Res Anal Rev 6:814–820

    Google Scholar 

  9. Ethiraj KR, Nithya P, Krishnakumar V et al (2013) Synthesis and cytotoxicity study of pyrazoline derivatives of methoxy substituted naphthyl chalcones. Res Chem Intermed 39:1833–1841. https://doi.org/10.1007/s11164-012-0718-3

    Article  CAS  Google Scholar 

  10. Pathade SS, Jagdale BS (2020) Synthesis and dft based quantum chemical studies of 2-(3-bromophenyl)-4-(4-bromophenyl)-2,3-dihydro-1h-1,5-benzodiazepine. J Adv Sci Res 11:87–94

    CAS  Google Scholar 

  11. Escobar CA, Donoso-Tauda O, Araya-Maturana R, Sicker D (2009) Synthesis of 1,5-benzodiazepines with unusual substitution pattern from chalcones under solvent-free microwave irradiation conditions. Synth Commun 39:166–174. https://doi.org/10.1080/00397910802372517

    Article  CAS  Google Scholar 

  12. Ameta KL, Rathore NS, Kumar B (2012) Synthesis and in vitro anti-breast cancer activity of some novel 1,5-benzothiazepine derivatives. J Serb Chem Soc 77:725–731. https://doi.org/10.2298/JSC110715219A

    Article  CAS  Google Scholar 

  13. Nayak J, Dayananda P, Telma D’Souza V (2019) Synthesis and antimicrobial studies of (E)-N-((2-chloro-6-substituted quinolin-3-yl)methylene)-4-(substituted phenyl)-6-phenyl-2H-1,3-thiazin-2-amines. Chem Data Collect 24:100308. https://doi.org/10.1016/j.cdc.2019.100308

    Article  CAS  Google Scholar 

  14. Balalaie S, Abdolmohammadi S, Soleimanifard B (2009) An efficient synthesis of novel hexahydropyrido[2,3-d]pyrimidine derivatives from (arylmethylidene)pyruvic acids (=(3E)-4-aryl-2-oxobut-3-enoic acids) in aqueous media. Helv Chim Acta 92:932–936. https://doi.org/10.1002/HLCA.200800318

    Article  CAS  Google Scholar 

  15. Abdolmohammadi S (2013) ZnO nanoparticles-catalyzed cyclocondensation reaction of arylmethylidenepyruvic acids with 6-aminouracils. Comb Chem High Throughput Screen 16:32–36. https://doi.org/10.2174/1386207311316010005

    Article  CAS  PubMed  Google Scholar 

  16. Sadegh-Samiei S, Abdolmohammadi S (2018) TiO2-SiO2 nanocomposite-promoted efficient cyclocondensation reaction of arylmethylidenepyruvic acids with dimedone in aqueous media. J Chin Chem Soc 65:1155–1159. https://doi.org/10.1002/JCCS.201800057

    Article  CAS  Google Scholar 

  17. Dahi-Azar S, Abdolmohammadi S, Mokhtari J (2020) Ethanol-drop grinding approach: cadmium oxide nanoparticles catalyzed the synthesis of [1,3]dioxolo[g][1]benzopyran-6-carboxylic acids and pyrido[d]pyrimidine-7-carboxylic acids. Comb Chem High Throughput Screen 24:139–147. https://doi.org/10.2174/1386207323666200712145041

    Article  CAS  Google Scholar 

  18. Sadegh-Samiei S, Abdolmohammadi S (2018) Efficient synthesis of pyrido[2,3-d]pyrimidine-7-carboxylic acids catalyzed by a TiO2/SiO2 nanocomposite in aqueous media at room temperature. Zeitschrift fur Naturforsch Sect B J Chem Sci 73:641–645. https://doi.org/10.1515/ZNB-2018-0076/DOWNLOADASSET/SUPPL/ZNB-2018-0076_SUPPL.PDF

    Article  CAS  Google Scholar 

  19. Shakil NA, Singh MK, Sathiyendiran M et al (2013) Microwave synthesis, characterization and bio-efficacy evaluation of novel chalcone based 6-carbethoxy-2-cyclohexen-1-one and 2H-indazol-3-ol derivatives. Eur J Med Chem 59:120–131. https://doi.org/10.1016/J.EJMECH.2012.10.038

    Article  CAS  PubMed  Google Scholar 

  20. Abdolmohammadi S (2012) TiO2 nanoparticles as an effective catalyst for the synthesis of hexahydro-2-quinolinecarboxylic acids derivatives. Chin Chem Lett 23:1003–1006. https://doi.org/10.1016/J.CCLET.2012.06.038

    Article  CAS  Google Scholar 

  21. Saeed B, Shahrzad A, Bita S (2012) Facile one-pot synthesis of novel hexahydro-2-quinolinecarboxylic acids under solvent-free reaction conditions. Int J Org Chem 2012:276–281. https://doi.org/10.4236/IJOC.2012.23037

    Article  Google Scholar 

  22. Nielsen SF, Boesen T, Larsen M et al (2004) Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorg Med Chem 12:3047–3054. https://doi.org/10.1016/J.BMC.2004.03.071

    Article  CAS  PubMed  Google Scholar 

  23. Zheng Y, Wang X, Gao S et al (2015) Synthesis and antifungal activity of chalcone derivatives. Nat Prod Res 29:1804–1810. https://doi.org/10.1080/14786419.2015.1007973

    Article  CAS  PubMed  Google Scholar 

  24. Kumar D, Kumar NM, Akamatsu K et al (2010) Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg Med Chem Lett 20:3916–3919. https://doi.org/10.1016/J.BMCL.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  25. Sivakumar PM, Prabhakar PK, Doble M (2011) Synthesis, antioxidant evaluation, and quantitative structure-activity relationship studies of chalcones. Med Chem Res 20:482–492. https://doi.org/10.1007/s00044-010-9342-1

    Article  CAS  Google Scholar 

  26. Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137. https://doi.org/10.1016/J.EJMECH.2006.09.019

    Article  CAS  PubMed  Google Scholar 

  27. Yadav N, Dixit SK, Bhattacharya A et al (2012) Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des 80:340–347. https://doi.org/10.1111/J.1747-0285.2012.01383.X

    Article  CAS  PubMed  Google Scholar 

  28. Boumendjel A, Boccard J, Carrupt PA et al (2008) Antimitotic and antiproliferative activities of chalcones: forward structure-activity relationship. J Med Chem 51:2307–2310. https://doi.org/10.1021/JM0708331/SUPPL_FILE/JM0708331-FILE001.PDF

    Article  CAS  PubMed  Google Scholar 

  29. Shiri P (2020) An overview on the copper-promoted synthesis of five-membered heterocyclic systems. Appl Organomet Chem 34:e5600. https://doi.org/10.1002/aoc.5600

    Article  CAS  Google Scholar 

  30. Dhonnar SL, More RA, Adole VA et al (2022) Synthesis, spectral analysis, antibacterial, antifungal, antioxidant and hemolytic activity studies of some new 2,5-disubstituted-1,3,4-oxadiazoles. J Mol Struct 1253:132216. https://doi.org/10.1016/j.molstruc.2021.132216

    Article  CAS  Google Scholar 

  31. Du Q, Wang H, Xie J (2011) Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets? Int J Biol Sci 7:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. James ND, Growcott JW (2009) Zibotentan endothelin ETA receptor antagonist oncolytic. Drugs Future 34:624–633

    Article  CAS  Google Scholar 

  33. Zheng Y, Zhang X, Yao R et al (2016) 1,3-Dipolar cycloaddition of alkyne-tethered N-tosylhydrazones: synthesis of fused polycyclic pyrazoles. J Org Chem 81:11072–11080. https://doi.org/10.1021/ACS.JOC.6B02076/SUPPL_FILE/JO6B02076_SI_003.PDF

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Dong S, Zheng Y et al (2018) Synthesis of spiro-4H-pyrazole-oxindoles and fused 1H-pyrazoles via divergent, thermally induced tandem cyclization/migration of alkyne-tethered diazo compounds. Org Biomol Chem 16:688–692. https://doi.org/10.1039/C7OB02802D

    Article  CAS  PubMed  Google Scholar 

  35. Mashayekh K, Shiri P (2019) An overview of recent advances in the applications of click chemistry in the synthesis of bioconjugates with anticancer activities. ChemistrySelect 4:13459–13478. https://doi.org/10.1002/SLCT.201902362

    Article  CAS  Google Scholar 

  36. Dhonnar SL, Sadgir NV, Adole VA, Jagdale BS (2021) Molecular structure, FT-IR spectra, MEP and HOMO-LUMO investigation of 2-(4-fluorophenyl)-5-phenyl-1, 3,4-oxadiazole using DFT theory calculations. Adv J Chem A 4:220–230. https://doi.org/10.22034/AJCA.2021.283003.1254

    Article  CAS  Google Scholar 

  37. Dhonnar SL, Jagdale BS, Sawant AB et al (2016) Molecular structure, vibrational spectra and theoretical HOMO-LUMO analysis of (E)-3, 5-dimethyl-1-phenyl-4-(p-tolyldiazenyl)-1H-pyrazole by DFT method. Der Pharma Chem 8:119–128

    CAS  Google Scholar 

  38. Dhonnar SL, Adole VA, Sadgir NV, Jagdale BS (2019) Structural, vibrational and chemical reactivity studies of (2-(4- chlorophenyl)-5-(4-methylphenyl)- 1,3,4-oxadiazole. Int J Res Anal Rev 6:674–682

    Google Scholar 

  39. Dhonnar SL, Adole VA, More RA et al (2022) Synthesis, molecular structure, electronic, spectroscopic, NLO and antimicrobial study of N-benzyl-2-(5-aryl-1,3,4-oxadiazol-2-yl)aniline derivatives. J Mol Struct 1262:133017. https://doi.org/10.1016/J.MOLSTRUC.2022.133017

    Article  CAS  Google Scholar 

  40. Boström J, Hogner A, Llinàs A et al (2012) Oxadiazoles in medicinal chemistry. J Med Chem 55:1817–1830. https://doi.org/10.1021/JM2013248

    Article  PubMed  Google Scholar 

  41. Mohan TP, Vishalakshi B, Bhat KS et al (2004) Synthesis and insecticidal activity of some 1,3,4-oxadiazole derivatives containing phenoxyfluorophenyl group. Indian J Chem Sect B Org Med Chem 43:1798–1801. https://doi.org/10.1002/CHIN.200450091

    Article  Google Scholar 

  42. Shiri P, Amani AM, Mayer-Gall T (2021) A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Beilstein J Org Chem 17:1600–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shiri P, Aboonajmi J (2020) A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions. Beilstein J Org Chem 16:551–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bressi JC, de Jong R, Wu Y et al (2010) Benzimidazole and imidazole inhibitors of histone deacetylases: synthesis and biological activity. Bioorg Med Chem Lett 20:3138–3141. https://doi.org/10.1016/J.BMCL.2010.03.092

    Article  CAS  PubMed  Google Scholar 

  45. Adelstein GW (1973) Antiarrhythmic agents. synthesis and biological activity of some tetrazole and oxadiazole analogs of 4-dialkylamino-2,2-diarylbutyramides. J Med Chem 16:309–312. https://doi.org/10.1021/JM00262A001/ASSET/JM00262A001.FP.PNG_V03

    Article  CAS  PubMed  Google Scholar 

  46. Gao C, Chang L, Xu Z et al (2019) Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur J Med Chem 163:404–412. https://doi.org/10.1016/J.EJMECH.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  47. Kumar V, Kaur K, Gupta GK, Sharma AK (2013) Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 69:735–753. https://doi.org/10.1016/J.EJMECH.2013.08.053

    Article  CAS  PubMed  Google Scholar 

  48. Zhang XH, Lai WY, Gao ZQ et al (2000) Photoluminescence and electroluminescence of pyrazoline monomers and dimers. Chem Phys Lett 320:77–80. https://doi.org/10.1016/S0009-2614(00)00213-X

    Article  CAS  Google Scholar 

  49. Bai G, Li J, Li D et al (2007) Synthesis and spectrum characteristic of four new organic fluorescent dyes of pyrazoline compounds. Dye Pigment 75:93–98. https://doi.org/10.1016/j.dyepig.2006.04.017

    Article  CAS  Google Scholar 

  50. Wagner A, Schellhammer C-W, Petersen S (1966) Aryl-Δ2-pyrazolines as optical brighteners. Angew Chem Int Ed Engl 5:699–704. https://doi.org/10.1002/anie.196606991

    Article  CAS  Google Scholar 

  51. Manna F, Chimenti F, Fioravanti R et al (2005) Synthesis of some pyrazole derivatives and preliminary investigation of their affinity binding to P-glycoprotein. Bioorg Med Chem Lett 15:4632–4635. https://doi.org/10.1016/J.BMCL.2005.05.067

    Article  CAS  PubMed  Google Scholar 

  52. Bhasker Reddy D, Padmaja A, Ramana Reddy PV (1993) Synthesis and reactivity of some new mono-and bis (2-pyrazolyl) sulfones. Sulfur Lett 16:227

    Google Scholar 

  53. Eisinger J, Boens N, Flores J (1981) Fluorescence polarization study of human erythrocyte membranes with 1-phenyl-3-(2-naphthyl)-2-pyrazoline as orientational probe. Biochim Biophys Acta Biomembr 646:334–343. https://doi.org/10.1016/0005-2736(81)90340-0

    Article  CAS  Google Scholar 

  54. Kumari P, Mishra VS, Narayana C et al (2020) Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-63377-x

    Article  CAS  Google Scholar 

  55. Yang B, Yang YS, Yang N et al (2016) Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors. Sci Rep 6:1–12. https://doi.org/10.1038/srep27571

    Article  CAS  Google Scholar 

  56. Özdemir Z, Kandilci HB, Gümüşel B et al (2007) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur J Med Chem 42:373–379. https://doi.org/10.1016/j.ejmech.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  57. Taher AT, Mostafa Sarg MT, El-Sayed Ali NR, Hilmy Elnagdi N (2019) Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2019.103023

    Article  PubMed  Google Scholar 

  58. Abdel-Sayed MA, Bayomi SM, El-Sherbeny MA et al (2016) Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibition activities and molecular docking study of pyrazoline derivatives. Bioorg Med Chem 24:2032–2042. https://doi.org/10.1016/j.bmc.2016.03.032

    Article  CAS  PubMed  Google Scholar 

  59. Kaplancikli ZA, Turan-Zitouni G, Özdemir A et al (2009) Synthesis and antinociceptive activities of some pyrazoline derivatives. Eur J Med Chem 44:2606–2610. https://doi.org/10.1016/j.ejmech.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  60. Sridhar S, Rajendraprasad Y (2012) Synthesis and analgesic studies of some new 2-pyrazolines. E-J Chem 9:1810–1815. https://doi.org/10.1155/2012/476989

    Article  CAS  Google Scholar 

  61. Deng H, Yu ZY, Shi GY et al (2012) Synthesis and in vitro antifungal evaluation of 1,3,5-trisubstituted-2-pyrazoline derivatives. Chem Biol Drug Des 79:279–289. https://doi.org/10.1111/j.1747-0285.2011.01308.x

    Article  CAS  PubMed  Google Scholar 

  62. Özdemir A, Turan-Zitouni G, Asim Kaplancikli Z et al (2010) Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J Enzyme Inhib Med Chem 25:565–571. https://doi.org/10.3109/14756360903373368

    Article  PubMed  Google Scholar 

  63. Kumar S, Meenakshi KS, Kumar P (2013) Synthesis and antimicrobial activity of some (3-phenyl-5-(1-phenyl-3-aryl- 1H-pyrazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)(pyridin-4-yl)methanones: New derivatives of 1,3,5-trisubstituted pyrazolines. Med Chem Res 22:433–439. https://doi.org/10.1007/s00044-012-0045-7

    Article  CAS  Google Scholar 

  64. Rani M, Yusuf M, Khan SA et al (2015) Synthesis, studies and in-vitro antibacterial activity of N-substituted 5-(furan-2-yl)-phenyl pyrazolines. Arab J Chem 8:174–180. https://doi.org/10.1016/J.ARABJC.2010.10.036

    Article  CAS  Google Scholar 

  65. Palaska E, Aytemir M, Uzbay IT, Erol D (2001) Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur J Med Chem 36:539–543. https://doi.org/10.1016/S0223-5234(01)01243-0

    Article  CAS  PubMed  Google Scholar 

  66. Rajendra Prasad Y, Lakshmana Rao A, Prasoona L et al (2005) Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg Med Chem Lett 15:5030–5034. https://doi.org/10.1016/J.BMCL.2005.08.040

    Article  CAS  PubMed  Google Scholar 

  67. Rizvi SUF, Siddiqui HL, Johns M et al (2012) Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med Chem Res 21:3741–3749. https://doi.org/10.1007/s00044-011-9912-x

    Article  CAS  Google Scholar 

  68. Kumar A, Varadaraj BG, Singla RK (2013) Synthesis and evaluation of antioxidant activity of novel 3,5-disubstituted-2-pyrazolines. Bull Fac Pharm Cairo Univ 51:167–173. https://doi.org/10.1016/J.BFOPCU.2013.04.002

    Article  Google Scholar 

  69. Monga V, Goyal K, Steindel M et al (2014) Synthesis and evaluation of new chalcones, derived pyrazoline and cyclohexenone derivatives as potent antimicrobial, antitubercular and antileishmanial agents. Med Chem Res 23:2019–2032. https://doi.org/10.1007/s00044-013-0803-1

    Article  CAS  Google Scholar 

  70. Shoman ME, Abdel-Aziz M, Aly OM et al (2009) Synthesis and investigation of anti-inflammatory activity and gastric ulcerogenicity of novel nitric oxide-donating pyrazoline derivatives. Eur J Med Chem 44:3068–3076. https://doi.org/10.1016/j.ejmech.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  71. Ahn JH, Kim HM, Jung SH et al (2004) Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents. Bioorg Med Chem Lett 14:4461–4465. https://doi.org/10.1016/j.bmcl.2004.06.046

    Article  CAS  PubMed  Google Scholar 

  72. Samshuddin S, Narayana B, Sarojini BK et al (2012) Antimicrobial, analgesic, DPPH scavenging activities and molecular docking study of some 1,3,5-triaryl-2-pyrazolines. Med Chem Res 21:2012–2022. https://doi.org/10.1007/S00044-011-9735-9/FIGURES/2

    Article  CAS  Google Scholar 

  73. Adhikari A, Kalluraya B, Sujith KV et al (2012) Synthesis, characterization and pharmacological study of 4,5-dihydropyrazolines carrying pyrimidine moiety. Eur J Med Chem 55:467–474. https://doi.org/10.1016/j.ejmech.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  74. Rangaswamy J, Kumar HV, Harini ST, Naik N (2017) Functionalized 3-(benzofuran-2-yl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole scaffolds: a new class of antimicrobials and antioxidants. Arab J Chem 10:S2685–S2696. https://doi.org/10.1016/J.ARABJC.2013.10.012

    Article  CAS  Google Scholar 

  75. Srinivas B, Kumar PV, Nagendra Reddy P et al (2018) Design, synthesis, antioxidant and antibacterial activities of novel 2-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-(2HChromen- 3-yl)-2H-tetrazoles. Russ J Bioorg Chem 44:244–251. https://doi.org/10.1134/S1068162018020097

    Article  CAS  Google Scholar 

  76. Kitawat BS, Singh M (2014) Synthesis, characterization, antibacterial, antioxidant, DNA binding and SAR study of a novel pyrazine moiety bearing 2-pyrazoline derivatives. New J Chem 38:4290–4299. https://doi.org/10.1039/C4NJ00594E

    Article  CAS  Google Scholar 

  77. Kostopoulou I, Diassakou A, Kavetsou E et al (2021) Novel quinolinone–pyrazoline hybrids: synthesis and evaluation of antioxidant and lipoxygenase inhibitory activity. Mol Divers 25:723–740. https://doi.org/10.1007/s11030-020-10045-x

    Article  CAS  PubMed  Google Scholar 

  78. Mehta JV, Gajera SB, Thakor P et al (2015) Synthesis of 1,3,5-trisubstituted pyrazoline derivatives and their applications. RSC Adv 5:85350–85362. https://doi.org/10.1039/C5RA17185G

    Article  CAS  Google Scholar 

  79. Karthikeyan MS, Holla BS, Kumari NS (2007) Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. Eur J Med Chem 42:30–36. https://doi.org/10.1016/j.ejmech.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  80. Narasimha Sarma K, Subha MCS, Chow Doji Rao K (2010) A facial synthesis and antimicrobial activity of some pyrazole derivatives carrying indole. E-J Chem 7:745–750. https://doi.org/10.1155/2010/979401

    Article  Google Scholar 

  81. Saroja T, Ezhilarasi RM, Selvamani V, Mahalakshmi S (2021) Synthesis, characterization and in-silico analysis of new 2-pyrazolines. J Sci Res 13:183–194. https://doi.org/10.3329/JSR.V13I1.46995

    Article  CAS  Google Scholar 

  82. Mishra VK, Mishra M, Kashaw V, Kashaw SK (2017) Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg Med Chem 25:1949–1962. https://doi.org/10.1016/j.bmc.2017.02.025

    Article  CAS  PubMed  Google Scholar 

  83. Ganesan S, Sarangapani M, Doble M (2021) An expedient, one-pot, stepwise sequential approach for the regioselective synthesis of pyrazolines. J Chem Res 45:326–333. https://doi.org/10.1177/1747519820977165

    Article  CAS  Google Scholar 

  84. Santhi N, Santhi N, Emayavaramban M et al (2014) Green synthesis and antibacterial evaluation of some 2-pyrazoline derivatives. Int J Adv Chem 2:53–58. https://doi.org/10.14419/ijac.v2i2.1851

    Article  Google Scholar 

  85. Veeranarayana Reddy M, Kim JS, Lim KT, Tae Jeong Y (2014) Polyethylene glycol (PEG-400): an efficient green reaction medium for the synthesis of benzo[4,5]imidazo[1,2-a]-pyrimido[4,5-d]pyrimidin-4(1H)-ones under catalyst-free conditions. Tetrahedron Lett 55:6459–6462. https://doi.org/10.1016/J.TETLET.2014.09.135

    Article  CAS  Google Scholar 

  86. Kamal A, Reddy DR, Rajendar, (2005) A simple and green procedure for the conjugate addition of thiols to conjugated alkenes employing polyethylene glycol (PEG) as an efficient recyclable medium. Tetrahedron Lett 46:7951–7953. https://doi.org/10.1016/J.TETLET.2005.09.082

    Article  CAS  Google Scholar 

  87. Blanton JR (1997) The selective reduction of aldehydes using polyethylene glycol-sodium borohydride derivatives as phase transfer reagents. Synth Commun 27:2093–2102. https://doi.org/10.1080/00397919708006816

    Article  CAS  Google Scholar 

  88. Mirfakhraei S, Hekmati M, Eshbala FH, Veisi H (2018) Fe3O4/PEG-SO3H as a heterogeneous and magnetically-recyclable nanocatalyst for the oxidation of sulfides to sulfones or sulfoxides. New J Chem 42:1757–1761. https://doi.org/10.1039/C7NJ02513K

    Article  CAS  Google Scholar 

  89. Modugu NR, Pittala PK (2017) Polyethylene glycol (PEG-400) promoted as an efficient and recyclable reaction medium for the one-pot eco-friendly synthesis of functionalized isoxazole substituted spirooxindole derivatives. New J Chem 41:14062–14066. https://doi.org/10.1039/C7NJ03515B

    Article  CAS  Google Scholar 

  90. Chandrasekhar S, Narsihmulu C, Shameem Sultana S, Ramakrishna Reddy N (2002) Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the heck reaction. Org Lett 4:4399–4401. https://doi.org/10.1021/OL0266976

    Article  CAS  PubMed  Google Scholar 

  91. Hasaninejad A, Beyrati M (2018) Eco-friendly polyethylene glycol (PEG-400): a green reaction medium for one-pot, four-component synthesis of novel asymmetrical bis-spirooxindole derivatives at room temperature. RSC Adv 8:1934–1939. https://doi.org/10.1039/c7ra13133j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sujatha K, Vedula RR (2020) Polyethylene glycol (PEG-400) promoted one-pot, five-component synthesis of (E)-ethyl2-(2-((E)-2-(1-(4-methyl-2-(phenylamino)thiazol-5yl)ethylidene)hydrazinyl)-4-oxothiazol-5(4H)-ylidene)acetates. Mol Divers 24:413–421. https://doi.org/10.1007/s11030-019-09962-3

    Article  CAS  PubMed  Google Scholar 

  93. Adole VA, More RA, Jagdale BS et al (2020) Efficient synthesis, antibacterial, antifungal, antioxidant and cytotoxicity study of 2-(2-hydrazineyl)thiazole derivatives. Chem Sel 5:2778–2786. https://doi.org/10.1002/slct.201904609

    Article  CAS  Google Scholar 

  94. Mandawad GG, Kamble RD, Hese SV et al (2014) An efficient synthesis of isoxazoline libraries of thiophene analogs and its antimycobacterial investigation. Med Chem Res 23:4455–4463. https://doi.org/10.1007/S00044-014-1016-Y

    Article  CAS  Google Scholar 

  95. More RA, Sanap GB, Karale MA, Sarnikar YP, Gacche RN (2020) Antioxidant and cytotoxicity profile of the selected alcoholic beverages widely consumed in the Maharashtra state of India. Indian J Public Health Res Dev 11:607–612. https://doi.org/10.37506/IJPHRD.V11I6.9848

    Article  Google Scholar 

  96. Magnuson ML, Tanner LF, Fung BM (1994) Determination of order parameters from carbon–fluorine dipolar coupling. Liq Cryst 16:857–867. https://doi.org/10.1080/02678299408027856

    Article  CAS  Google Scholar 

  97. Yamali C, Gul HI, Kazaz C et al (2020) Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg Chem 96:103627. https://doi.org/10.1016/J.BIOORG.2020.103627

    Article  CAS  PubMed  Google Scholar 

  98. Jonathan C, Nick G, Stuart W (2012) Organic chemistry, 2nd edn. Oxford University Press, London

    Google Scholar 

  99. Lévai A (2002) Synthesis of 2-pyrazolines by the reactions of α, β-unsaturated aldehydes, ketones, and esters with diazoalkanes, nitrile imines, and hydrazines. J Heterocycl Chem 39:1–13. https://doi.org/10.1002/JHET.5570390101

    Article  Google Scholar 

  100. Ferres H, Jackson WR (1969) The kinetics and stereochemistry of pyrazoline-ring formation. Evidence for stereoselective enamine–imine tautomerism. J Chem Soc D Chem Commun. https://doi.org/10.1039/C29690000261

    Article  Google Scholar 

  101. Lévai A (1997) Synthesis of pyrazolines by the reactions of α, β-enones with diazomethane and hydrazines (review). Chem Heterocycl Compd 33:647–659

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the central instrumentation facility (CIF), Savitribai Phule Pune University, Pune and IIT Ropar for NMR and Mass spectral analysis. The authors also acknowledge the CIC, KTHM College for FT-IR analysis. The authors also would like to thank Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Nashik (India) for providing necessary research facilities. Dr Aapoorva P. Hiray, Coordinator, MG Vidyamandir Institute, is gratefully acknowledged for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil L. Dhonnar.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhonnar, S.L., Jagdale, B.S., Adole, V.A. et al. PEG-mediated synthesis, antibacterial, antifungal and antioxidant studies of some new 1,3,5-trisubstituted 2-pyrazolines. Mol Divers 27, 2441–2452 (2023). https://doi.org/10.1007/s11030-022-10562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10562-x

Keywords

Navigation