Skip to main content

Novel 1,2,4-triazoles derived from Ibuprofen: synthesis and in vitro evaluation of their mPGES-1 inhibitory and antiproliferative activity

Abstract

Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46–68.76 µM, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 µM. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Bülbül B, Küçükgüzel İ (2019) Microsomal prostaglandin E2 synthase-1 as a new macromolecular drug target in the prevention of inflammation and cancer. Anticancer Agents Med Chem 19:1205–1222. https://doi.org/10.2174/1871520619666190227174137

    Article  CAS  PubMed  Google Scholar 

  2. Larsson K, Jakobsson PJ (2015) Inhibition of microsomal prostaglandin E synthase-1 as targeted therapy in cancer treatment. Prostagland Other Lipid Mediat 120:161–165. https://doi.org/10.1016/j.prostaglandins.2015.06.002

    Article  CAS  Google Scholar 

  3. Eibl G, Bruemmer D, Okada Y, Duffy JP, Law RE, Reber HA, Hines OJ (2003) PGE2 is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem Biophys Res Commun 306:887–897. https://doi.org/10.1016/S0006-291X(03)01079-9

    Article  CAS  PubMed  Google Scholar 

  4. Dufour M, Faes S, Dormond-Meuwly A, Demartines N, Dormond O (2014) PGE2-induced colon cancer growth is mediated by MTORC1. Biochem Biophys Res Commun 451:587–591. https://doi.org/10.1016/j.bbrc.2014.08.032

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Da L, Yang X, Feng D, Yin R, Li M, Zhang Z, Jiang F, Xu L (2014) Celecoxib potentially inhibits metastasis of lung cancer promoted by surgery in mice, via suppression of the PGE2-modulated β-catenin pathway. Toxicol Lett 225:201–207. https://doi.org/10.1016/j.toxlet.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  6. Chen EP, Smyth EM (2011) COX-2 and PGE2-dependent immunomodulation in breast cancer. Prostagland Other Lipid Mediat 96:14–20. https://doi.org/10.1016/j.prostaglandins.2011.08.005

    Article  CAS  Google Scholar 

  7. Ruan D, So SP (2014) Prostaglandin E2 produced by inducible COX-2 and MPGES-1 promoting cancer cell proliferation in vitro and in vivo. Life Sci 116:43–50. https://doi.org/10.1016/j.lfs.2014.07.042

    Article  CAS  PubMed  Google Scholar 

  8. Nakanishi M, Gokhale V, Meuillet EJ, Rosenberg DW (2010) MPGES-1 as a target for cancer suppression. Biochimie 92:660–664. https://doi.org/10.1016/j.biochi.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattila S, Tuominen H, Koivukangas J, Stenbäck F (2009) The terminal prostaglandin synthases MPGES-1, MPGES-2, and CPGES are all overexpressed in human gliomas. Neuropathology 29:156–165. https://doi.org/10.1111/j.1440-1789.2008.00963.x

    Article  PubMed  Google Scholar 

  10. Hanaka H, Pawelzik SC, Johnsen JI, Rakonjac M, Terawaki K, Rasmuson A, Sveinbjörnsson B, Schumacher MC, Hamberg M, Samuelsson B, Jakobsson PJ, Kogner P, Rådmark O (2009) Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proc Natl Acad Sci 106:18757–18762. https://doi.org/10.1073/pnas.0910218106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salvado MD, Alfranca A, Haeggström JZ, Redondo JM (2012) Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. Trends Mol Med 18:233–243. https://doi.org/10.1016/j.molmed.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  12. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscl Thromb Vasc Biol 31:986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

    Article  CAS  PubMed  Google Scholar 

  13. El-Husseiny WM, El-Sayed MAA, Abdel-Aziz NI, El-Azab AS, Asiri YA, Abdel-Aziz AAM (2018) Structural alterations based on naproxen scaffold: synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. Eur J Med Chem 158:134–143. https://doi.org/10.1016/j.ejmech.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  14. Matos P, Kotelevets L, Jordan P, Gonçalves V, Henriques A, Zerbib P, Moyer MP, Chastre E (2013) Ibuprofen inhibits colitis-induced overexpression of tumorrelated Rac1b. Neoplasia 15:102–111. https://doi.org/10.1593/neo.121890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greenspan EJ, Madigan JP, Boardman LA, Rosenberg DW (2011) Ibuprofen ınhibits activation of nuclear β-catenin in human colon adenomas and ınduces the phosphorylation of GSK-3β. Cancer Prev Res 4:161–171. https://doi.org/10.1158/1940-6207.CAPR-10-0021

    Article  CAS  Google Scholar 

  16. Endo H, Yano M, Okumura Y, Kido H (2014) Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis 5:e1027–e1027. https://doi.org/10.1038/cddis.2013.550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sujith KV, Rao JN, Shetty P, Kalluraya B (2009) Regioselective reaction: synthesis and pharmacological study of mannich bases containing ibuprofen moiety. Eur J Med Chem 44:3697–3702. https://doi.org/10.1016/j.ejmech.2009.03.044

    Article  CAS  PubMed  Google Scholar 

  18. Abbas SE, Awadallah FM, Ibrahim NA, Gouda AM (2010) Novel substituted and fused pyrrolizine derivatives: synthesis, anti-inflammatory and ulcerogenecity studies. Eur J Med Chem 45:482–491. https://doi.org/10.1016/j.ejmech.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  19. Küçükgüzel İ, Küçükgüzel ŞG, Rollas S, Ötük-Sanış G, Özdemir O, Bayrak İ, Altuğ T, Stables JP (2004) Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4-aminophenyl)-4H-1,2,4-triazole derivatives and their anticonvulsant activity. Il Farm 59:893–901. https://doi.org/10.1016/j.farmac.2004.07.005

    Article  CAS  Google Scholar 

  20. Küçükgüzel İ, Tatar E, Küçükgüzel ŞG, Rollas S, De Clercq E (2008) Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3h-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur J Med Chem 43:381–392. https://doi.org/10.1016/j.ejmech.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  21. Navidpour L, Shafaroodi H, Abdi K, Amini M, Ghahremani MH, Dehpour AR, Shafiee A (2006) Design, synthesis, and biological evaluation of substituted 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles as selective COX-2 inhibitors. Bioorg Med Chem 14:2507–2517. https://doi.org/10.1016/j.bmc.2005.11.029

    Article  CAS  PubMed  Google Scholar 

  22. Salgın-Gökşen U, Gökhan-Kelekçi N, Göktaş Ö, Köysal Y, Kılıç E, Işık Ş, Aktay G, Özalp M (2007) 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg Med Chem 15:5738–5751. https://doi.org/10.1016/j.bmc.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  23. Küçükgüzel ŞG, Küçükgüzel İ, Tatar E, Rollas S, Şahin F, Güllüce M, De Clercq E, Kabasakal L (2007) Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents. Eur J Med Chem 42:893–901. https://doi.org/10.1016/j.ejmech.2006.12.038

    Article  CAS  PubMed  Google Scholar 

  24. Sakya SM, Shavnya A, Cheng H, Li C, Rast B, Li J, Koss DA, Jaynes BH, Mann DW, Petras CF, Seibel SB, Haven ML, Lynch MP (2008) comparative structure-activity relationship studies of 1-(5-methylsulfonylpyrid-2-Yl)-5-alkyl and (hetero)aryl triazoles and pyrazoles in canine COX inhibition. Bioorg Med Chem Lett 18:1042–1045. https://doi.org/10.1016/j.bmcl.2007.12.025

    Article  CAS  PubMed  Google Scholar 

  25. Hassan GS, Hegazy GH, Ibrahim NM, Fahim SH (2019) New ibuprofen derivatives as H2S and NO donors as safer anti-inflammatory agents. Future Med Chem 11:3029–3045. https://doi.org/10.4155/fmc-2018-0467

    Article  CAS  PubMed  Google Scholar 

  26. Kulabaş N, Tatar E, Bingöl Özakpınar Ö, Özsavcı D, Pannecouque C, De Clercq E, Küçükgüzel İ (2016) Synthesis and antiproliferative evaluation of novel 2-(4H–1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur J Med Chem 121:58–70. https://doi.org/10.1016/j.ejmech.2016.05.017

    Article  CAS  PubMed  Google Scholar 

  27. Erensoy G, Ding K, Zhan C-G, Elmezayen A, Yelekçi K (2020) Synthesis, in silico studies and cytotoxicity evaluation of novel 1,3,4-oxadiazole derivatives designed as potential MPGES-1 ınhibitors. J Res Pharm 24:436–451

    CAS  Google Scholar 

  28. Turky A, Bayoumi AH, Sherbiny FF, El-Adl K, Abulkhair HS (2021) Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through Inhibition of STAT3: synthesis and in silico mechanistic studies. Mol Divers 25:403–420. https://doi.org/10.1007/s11030-020-10131-0

    Article  CAS  PubMed  Google Scholar 

  29. Turky A, Sherbiny FF, Bayoumi AH, Ahmed HEA, Abulkhair HS (2020) Novel 1,2,4-triazole derivatives: design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch Pharm (Weinheim) 353:e2000170. https://doi.org/10.1002/ardp.202000170

    Article  CAS  Google Scholar 

  30. He S, Li C, Liu Y, Lai L (2013) Discovery of highly potent microsomal prostaglandin E 2 synthase 1 inhibitors using the active conformation structural model and virtual screen. J Med Chem 56:3296–3309. https://doi.org/10.1021/jm301900x

    Article  CAS  PubMed  Google Scholar 

  31. Vasincu I, Apotrosoaei M, Tuchiluş C, Pânzariu AT, Dragostin O, Lupaşcu D (2013) Profire, L new derıvatıves of aryl-propıonıc acıd. Synthesıs and bıologıcal evaluatıon. Rev Med Chir Soc Med Nat Iaşi 117:532–537

    PubMed  Google Scholar 

  32. Dhall E, Jain S, Mishra A, Dwivedi J, Sharma S (2018) Synthesis and evaluation of some phenyl substituted azetidine containing 1, 2, 4-triazole derivatives as antibacterial agents. J Heterocycl Chem 55:2859–2869. https://doi.org/10.1002/jhet.3357

    Article  CAS  Google Scholar 

  33. Raviprabha K, Manjunatha K, Poojary B, Kumar V, Harish N (2015) Synthesis, characterisation and antimicrobial activities of newer 3,4,5-trisubstitued [1,2,4]-triazoles derivatives. Int J Pharm Res Sch 4:96–104

    CAS  Google Scholar 

  34. Manjunatha K, Poojary B, Kumar V, Lobo PL, Fernandes J, Chandrashekhar C (2015) Synthesis, characterization and antimicrobial activities of imidazo-[2,1, b][1,3,4]-thiadiazoles. Pharma Chem 7:207–215

    CAS  Google Scholar 

  35. Nargund LVG, Reddy GRN, Hariprasad V (1994) Anti-inflammatory activity of substituted 1,3,4-oxadiazoles. J Pharm Sci 83:246–248. https://doi.org/10.1002/jps.2600830226

    Article  CAS  PubMed  Google Scholar 

  36. Durgun BB, Rollas S, Apaydın S, Öztürk R (1995) Synthesis and antimicrobial activity of some new 1-[4-(4-fluorobenzoylamino) benzoyl)-4-substituted thiosemicarbazides. Drug Metabol Drug Interact 12:145. https://doi.org/10.1515/DMDI.1995.12.2.145

    Article  CAS  PubMed  Google Scholar 

  37. Doğan H, Duran A, Yemni E (1999) Synthesıs and antıbacterıal actıvıty of l-(3-hydroxy-2-naphthoyl)-4-substıtuted thıosemıcarbazıdes. Drug Metabol Drug Interact 15:10

    Article  Google Scholar 

  38. Küçükgüzel ŞG, Oruç EE, Rollas S, Şahin F, Özbek A (2002) Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur J Med Chem 37:197–206. https://doi.org/10.1016/S0223-5234(01)01326-5

    Article  PubMed  Google Scholar 

  39. Cesur N, Birteksöz S, Ötük G (2002) Synthesis and biological evulation of some new thiosemicarbazides, 4-thiazolidinone, 1,3,4-oxadiazole and 1,2,4-triazole-3-thione derivatives bearing imidazo[1,2-α]pyridine moiety. Acta Pharm Turc 44:23–41

    CAS  Google Scholar 

  40. Çoruh I, Rollas S, Turan S, Akbuğa J (2012) Synthesis and evaluation of cytotoxic activities of some 1,4-disubstituted thiosemicarbazides, 2,5-disubstituted-1,3,4-thiadiazoles and 1,2,4-triazole-5-thiones derived from benzilic acid hydrazide. Marmara Pharm J 1:56–63

    Article  Google Scholar 

  41. Omar F, Mahfouz N, Rahman M (1996) Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. Eur J Med Chem 31:819–825. https://doi.org/10.1016/0223-5234(96)83976-6

    Article  CAS  PubMed  Google Scholar 

  42. Tutoveanu M, Constantinescu C, Maerean V (1973) New semi- and thiosemicarbazides and cyclization products. Rev Chim 24:155–158

    CAS  Google Scholar 

  43. Vasilev G (1991) Synthesis and growth-regulating activity of some hydrazides and thiosemicarbazides of the benzoic, phenylacetic, and 1-naphthylacetic acids. Dokl Na Bulg Akad Na Nauk 44:101–104

    CAS  Google Scholar 

  44. Dobosz M, Pachuta-Stec A (1996) Synthesis of new derivatives of 3-benzyl-δ2-1,2,4-triazoline-5thione and 5-benzyl-1,3,4-thiadiazole. Act Pol Pharm Drug Res 53:123–131

    CAS  Google Scholar 

  45. Wujec M, Pachuta-Stec A, Stefańska J, Kuśmierz E, Siwek A (2013) Synthesis and antibacterial activity of some new derivatives of thiosemicarbazide and 1,2,4-triazole. Phosph Sulfur Silicon Relat Elem 188:1661–1669. https://doi.org/10.1080/10426507.2012.757612

    Article  CAS  Google Scholar 

  46. Küçükgüzel ŞG, Çıkla-Süzgün P (2015) Recent advances bioactive 1,2,4-triazole-3-thiones. Eur J Med Chem 97:830–870. https://doi.org/10.1016/j.ejmech.2014.11.033

    Article  CAS  PubMed  Google Scholar 

  47. Ulusoy N, Çapan G, Ergenç N, Ekinci A, Vidin A (1998) Synthesis, characterization and anticonvulsant activity of new 4-thiazolidinone and 1,2,4-triazole-3-thione derivatives. Acta Pharm Turc 40:5–8

    Google Scholar 

  48. Coşkun G, Djikic T, Hayal T, Türkel N, Yelekçi K, Şahin F, Küçükgüzel Ş (2018) Synthesis, molecular docking and anticancer activity of diflunisal derivatives as cyclooxygenase enzyme inhibitors. Molecules 23:1969. https://doi.org/10.3390/molecules23081969

    Article  CAS  PubMed Central  Google Scholar 

  49. Marcel P, Bellon R (1961) Erfectionnements Au Procédé de Préparation Des Mercapto 3 Triazoles 1. 2. 4. Etproduits Fabriqués Selon Le Procédé. FR1273881(A) 1961-10-20.

  50. Abdel-Aziz M, Abuo-Rahma GEDAA, Beshr EAM, Ali TFS (2013) New nitric oxide donating 1,2,4-triazole/oxime hybrids: synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities. Bioorg Med Chem 21:3839–3849. https://doi.org/10.1016/j.bmc.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  51. Mohassab AM, Hassan HA, Abdelhamid D, Abdel-Aziz M, Dalby KN, Kaoud TS (2017) Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: synthesis, molecular docking, anti-inflammatory, cox inhibition, ulceroginicity and histopathological investigations. Bioorg Chem 75:242–259. https://doi.org/10.1016/j.bioorg.2017.09.018

    Article  CAS  PubMed  Google Scholar 

  52. Karakurt A, Dalkara S (1999) Oksim ve Oksim Eterler: I. Sentezleri ve Farmakolojik Özellikleri. FABAD J Pharm Sci 24:143–156

    CAS  Google Scholar 

  53. Rollas S, Kalyoncuoğlu N, Altıner D, Yeğenoğlu Y (1993) 5-(4-Aminophenyl)-4-substitued 2,4-dihydro-3H-1,2,4-triazole-3-thiones: synthesis and antibacterial and antifungal activities. Pharmazie 48(308):309

    Google Scholar 

  54. Bayrak H, Demirbas A, Karaoglu SA, Demirbas N (2009) Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur J Med Chem 44:1057–1066. https://doi.org/10.1016/j.ejmech.2008.06.019

    Article  CAS  PubMed  Google Scholar 

  55. Kumar H, Javed SA, Khan SA, Amir M (2008) 1,3,4-Oxadiazole/thiadiazole and 1,2,4-triazole derivatives of biphenyl-4-yloxy acetic acid: synthesis and preliminary evaluation of biological properties. Eur J Med Chem 43:2688–2698. https://doi.org/10.1016/j.ejmech.2008.01.039

    Article  CAS  PubMed  Google Scholar 

  56. Amir M, Kumar S (2007) Synthesis and evaluation of anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation properties of ibuprofen derivatives. Acta Pharm 57:31–45. https://doi.org/10.2478/v10007-007-0003-y

    Article  CAS  PubMed  Google Scholar 

  57. Baji H, Flammang M, Kimny T, Gasquez F, Compagnon P, Delcourt A (1995) Synthesis and antifungal activity of novel (l-aryl-2-heterocyclyl)ethylideneaminooxymethyl-substituted dioxolanes. Eur J Med Chem 30:617–626

    Article  CAS  Google Scholar 

  58. Ansari MS, Rama NH, Hussain MT, Raza AR (2000) Diastereotopy in some 3,4-dihydroisocoumarins—effect of changing the substituents on the chiral centre. Spectrochim Acta A Mol Biomol Spectrosc 56:1385–1389. https://doi.org/10.1016/S1386-1425(99)00266-8

    Article  Google Scholar 

  59. Khan N, Ansari MS, Baber Z (2002) Diastereotopic effect in some N-Substituted-3-methyl-4,1-benzoxazepine-2,5-diones. Spectrochim Acta A Mol Biomol Spectrosc 58:2265–2269. https://doi.org/10.1016/S1386-1425(01)00698-9

    Article  CAS  PubMed  Google Scholar 

  60. Frączek T, Paneth A, Kamiński R, Krakowiak A, Paneth P (2015) Searching for novel scaffold of triazole non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Enzyme Inhib Med Chem 31:1–9. https://doi.org/10.3109/14756366.2015.1039531

    Article  CAS  Google Scholar 

  61. Saal C, Becker A, Krier M, Fuchß T (2021) Atropisomerism: a neglected way to escape out of solubility flatlands. J Pharm Sci 111:206–213. https://doi.org/10.1016/j.xphs.2021.10.011

    Article  CAS  PubMed  Google Scholar 

  62. Laoufi A, Belboukhari N, Sekkoum K, Aboul-Enein HY (2021) Synthesis and chiral separation of atropisomers of 4,5-di methyl ∆ 4 N-phenyl N-aryl Imidazoline-2-thione derivatives. Chirality 33:264–273. https://doi.org/10.1002/chir.23306

    Article  CAS  PubMed  Google Scholar 

  63. Silverstein R, Webster F, Kiemle J (2005) In Spectrometric identification of organic compounds. Wiley, New Jersey, pp 171–172

    Google Scholar 

  64. Balcı M (2005) Basic 1 H- and 13 C-NMR spectroscopy, 1 edn, transferred to digital print. Elsevier, Amsterdam, Heidelberg

    Google Scholar 

  65. Günay NS, Çapan G, Ulusoy N, Ergenç N, Ötük G, Kaya D (1999) 5-Nitroimidazole derivatives as possible antibacterial and antifungal agents. Il Farm 54:826–831. https://doi.org/10.1016/S0014-827X(99)00109-3

    Article  Google Scholar 

  66. Karczmarzyk Z, Pitucha M, Wysocki W, Pachuta-Stec A, Stańczuk A (2013) 3-Benzyl-4-ethyl-1 H-1,2,4-triazole-5(4 H )-thione. Acta Crystallogr Sect E Struct Rep Online 69:o155–o156. https://doi.org/10.1107/S1600536812051276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andersen HKG, Christensen I, Mogensen J, Larsen (2004) Pharmaceutical use of substituted 1,2,4-triazoles. WO2004/089367(A1).

  68. Kampen G, Andersen H (2004) Combination therapy using an 11-beta-hydroxysteroid dehydrogenase type 1 ınhibitor and an antihypertansive agent for the treatment of metabolic syndrome and related diseases and disorders. Patent No: WO2004/089416(A2).

  69. Kampen G Andersen H (2004) Combination therapy using an 11β-hydroxysteroid dehydrogenase type 1 ınhibitor and a glucocorticoid receptor agonist to minimize the side effects associated with glucocorticoid receptor agonist therapy. WO2004/089415(A2)

  70. Wobst I, Schiffmann S, Birod K, Maier TJ, Schmidt R, Angioni C, Geisslinger G, Grösch S (2008) Dimethylcelecoxib inhibits prostaglandin E2 production. Biochem Pharmacol 76:62–69. https://doi.org/10.1016/j.bcp.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  71. Hanke T, Rörsch F, Thieme TM, Ferreiros N, Schneider G, Geisslinger G, Proschak E, Grösch S, Schubert-Zsilavecz M (2013) Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine MPGES-1. Bioorg Med Chem 21:7874–7883. https://doi.org/10.1016/j.bmc.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  72. Howe LR, Subbaramaiah K, Kent CV, Zhou XK, Chang S-H, Hla T, Jakobsson P-J, Hudis CA, Dannenberg AJ (2013) Genetic deletion of microsomal prostaglandin E synthase-1 suppresses mouse mammary tumor growth and angiogenesis. Prostaglandins Other Lipid Mediat 106:99–105. https://doi.org/10.1016/j.prostaglandins.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  73. Olesch C, Sha W, Angioni C, Sha LK, Açaf E, Patrignani P, Jakobsson P-J, Radeke HH, Grösch S, Geisslinger G, von Knethen A, Weigert A, Brüne B (2015) MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to ınhibit anti-tumor ımmune responses in breast cancer. Oncotarget 6:10284–10296

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li Y, Chen J, Yin S, Nie D, He Z, Xie S, Wang X, Wu Y, Xiao J, Liu H, Wang J, Yang W, Ma L (2018) Regulation of MPGES-1 composition and cell growth via the MAPK signaling pathway in jurkat cells. Exp Ther Med 16:3211–3219. https://doi.org/10.3892/etm.2018.6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Othman EM, Fayed EA, Husseiny EM, Abulkhair HS (2022) The effect of novel synthetic semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles on the apoptotic markers, VEGFR-2, and cell cycle of myeloid leukemia. Bioorganic Chem 127:105968. https://doi.org/10.1016/j.bioorg.2022.105968

    Article  CAS  Google Scholar 

  76. Othman EM, Fayed EA, Husseiny EM, Abulkhair HS (2022) Apoptosis induction, PARP-1 inhibition, and cell cycle analysis of leukemia cancer cells treated with novel synthetic 1,2,3-triazole–chalcone conjugates. Bioorg Chem 123:105762. https://doi.org/10.1016/j.bioorg.2022.105762

    Article  CAS  PubMed  Google Scholar 

  77. Özsavcí D, Erşahin M, Şener A, Özakpinar ÖB, Toklu HZ, Akakín D, Şener G, Yeğen BÇ (2011) The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats. Neurosurgery 68:1699–1708. https://doi.org/10.1227/NEU.0b013e318210f258

    Article  PubMed  Google Scholar 

  78. Ding K, Zhou Z, Hou S, Yuan Y, Zhou S, Zheng X, Chen J, Loftin C, Zheng F, Zhan C-G (2018) Structure-based discovery of MPGES-1 ınhibitors suitable for preclinical testing in wild-type mice as a new generation of anti-ınflammatory drugs. Sci Rep 8:5205. https://doi.org/10.1038/s41598-018-23482-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598. https://doi.org/10.1083/jcb.107.4.1589

    Article  CAS  PubMed  Google Scholar 

  80. Kamei D, Murakami M, Sasaki Y, Nakatani Y, Majima M, Ishikawa Y, Ishii T, Uematsu S, Akira S, Hara S, Kudo I (2010) Microsomal prostaglandin E synthase-1 in both cancer cells and hosts contributes to tumour growth, invasion and metastasis. Biochem J 425:361–371. https://doi.org/10.1042/BJ20090045

    Article  CAS  Google Scholar 

  81. Wu K-M, Dou J, Ghantous H, Chen S, Bigger A, Birnkrant D (2010) Current regulatory perspectives on genotoxicity testing for botanical drug product development in the U.S.A. Regul Toxicol Pharmacol 56:1–3. https://doi.org/10.1016/j.yrtph.2009.09.012

    Article  PubMed  Google Scholar 

  82. Khurana P, Jachak SM (2016) Chemistry and biology of microsomal prostaglandin E 2 synthase-1 (MPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status. RSC Adv 6:28343–28369. https://doi.org/10.1039/C5RA25186A

    Article  CAS  Google Scholar 

  83. Stoyanov S, Petkov I, Antonov L, Stoyanova T, Karagiannidis P, Aslanidis P (1990) Thione-thiol tautomerism and stability of 2- and 4-mercaptopyridines and 2-mercaptopyrimidines. Can J Chem 68:1482–1489. https://doi.org/10.1139/v90-227

    Article  CAS  Google Scholar 

  84. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  85. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  86. Daina A, Zoete VA (2016) BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. Chem Med Chem 11:1117–1121. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  PubMed  Google Scholar 

  87. Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98. https://doi.org/10.2165/00003088-200342010-00003

    Article  CAS  PubMed  Google Scholar 

  88. Hamza A, Tong M, AbdulHameed MDM, Liu J, Goren AC, Tai H-H, Zhan C-G (2010) Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (MPGES-1) trimer with substrate PGH 2 and cofactor GSH: insights from computational alanine scanning and site-directed mutagenesis. J Phys Chem B 114:5605–5616. https://doi.org/10.1021/jp100668y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ding K, Zhou Z, Zhou S, Yuan Y, Kim K, Zhang T, Zheng X, Zheng F, Zhan C-G (2018) Design, synthesis, and discovery of 5-((1,3-diphenyl-1 H-pyrazol-4-Yl)methylene)pyrimidine-2,4,6(1 H,3 H,5 H)-triones and related derivatives as novel inhibitors of MPGES-1. Bioorg Med Chem Lett 28:858–862. https://doi.org/10.1016/j.bmcl.2018.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hamza A, Zhao X, Tong M, Tai H-H, Zhan C-G (2011) Novel human MPGES-1 inhibitors identified through structure-based virtual screening. Bioorg Med Chem 19:6077–6086. https://doi.org/10.1016/j.bmc.2011.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou Z, Yuan Y, Zhou S, Ding K, Zheng F, Zhan C-G (2017) Selective inhibitors of human MPGES-1 from structure-based computational screening. Bioorg Med Chem Lett 27:3739–3743. https://doi.org/10.1016/j.bmcl.2017.06.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Harding L, Wang Z, Tai H-H (1996) Stimulation of prostaglandin E2 synthesis by interleukin-1/3 is amplified by interferons but inhibited by interleukin-4 in human amnion-derived wish cells. Biochim Biophys Acta 1310:48–52

    Article  PubMed  Google Scholar 

  93. No T (2020) 471: Bacterial reverse mutation test, in OECD guidelines for the testing of chemicals. OECD Publishing, Paris

    Google Scholar 

  94. Maron DM, Ames BN (1983) Revised methods for the salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  PubMed  Google Scholar 

  95. Kuklish SL, Antonysamy S, Bhattachar SN, Chandrasekhar S, Fisher MJ, Fretland AJ, Gooding K, Harvey A, Hughes NE, Luz JG, Manninen PR, McGee JE, Navarro A, Norman BH, Partridge KM, Quimby SJ, Schiffler MA, Sloan AV, Warshawsky AM, York JS, Yu XP (2016) Characterization of 3,3-dimethyl substituted N-aryl piperidines as potent microsomal prostaglandin E synthase-1 inhibitors. Bioorg Med Chem Lett 26:4824–4828. https://doi.org/10.1016/j.bmcl.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  96. Cingolani G, Panella A, Perrone MG, Vitale P, di Mauro G, Fortuna CG, Armen RS, Ferorelli S, Smith WL, Scilimati A (2017) Structural basis for selective ınhibition of cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-Yl)-5-methyl-4-phenylisoxazole (P6). Eur J Med Chem 138:661–668. https://doi.org/10.1016/j.ejmech.2017.06.045

  97. Duggan KC, Walters MJ, Musee J, Harp JM, Kiefer JR, Oates JA, Marnett LJ (2010) Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J Biol Chem 285:34950–34959. https://doi.org/10.1074/jbc.M110.162982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morris G, Goodsell D, Halliday R, Huey R, Hart W, Belew Olson A (1998) Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  100. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I (2002) Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 19:1446–1457

    Article  CAS  PubMed  Google Scholar 

  102. Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473. https://doi.org/10.1021/ci500588j

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been supported by Marmara University Scientific Research Projects Coordination Unit under grant number SAG-A-070617-0336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlkay Küçükgüzel.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6276 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bülbül, B., Ding, K., Zhan, CG. et al. Novel 1,2,4-triazoles derived from Ibuprofen: synthesis and in vitro evaluation of their mPGES-1 inhibitory and antiproliferative activity. Mol Divers (2022). https://doi.org/10.1007/s11030-022-10551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-022-10551-0

Keywords

  • 1,2,4-Triazole
  • Atropisomer
  • Diastereotope
  • X-ray diffraction
  • Cancer
  • Angiogenesis
  • mPGES-1
  • Cytotoxicity