Skip to main content

Advertisement

Log in

Synthesis, antiproliferative activity, and molecular modeling of novel 4-methylcoumarin derivatives and/or nitric oxide donor hybrids

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Two new 4-methylcoumarin derivatives (3a–f and 4a–f) were designed, synthesized, and evaluated for their cytotoxic activity. Different spectroscopic methods and elemental analyses confirmed all the synthesized derivatives’ characterization. All the prepared compounds were biologically screened against four cancer cell lines (hepatocellular carcinoma HepG-2, colon cancer cell lines HCT-116, breast cancer cell lines MCF-7, and prostate cancer cell lines PC3). The in vitro antiproliferative activity of the target analogues 4b, 4c, 4f, 3b, and 3d against the MCF-7 cancer cell line was significant, with IC50 values of 3.98, 7.80, 10.94, 17.7, and 24.07 μM, respectively. Furthermore, the potent cytotoxic oxime derivative 4b was evaluated for cell cycle analysis showing a significant substantial disruption in cell cycle profile and cell cycle arrest at the S phase boundary with a time-dependent rise in a pre-G cell population, as well as a 22-fold increase in MCF-7 apoptosis compared to control cells. Accordingly, the Bax/Bcl-2 ratio, a critical ratio in controlling cell sensitivity to apoptosis, increased upon treatment with the oxime analog 4b. A docking investigation was conducted within the BcL-2 binding site to explore and anticipate the binding modes of the synthesized compounds. Thus, synthesizing these novel coumarin/nitric oxide hybrids may aid in developing promising antiproliferative agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bronikowska J, Szliszka E, Jaworska D, Czuba ZP, Krol W (2012) The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand TRAIL. Molecules 17:6449–6464. https://doi.org/10.3390/molecules17066449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Devji T, Reddy C, Woo C, Awale S, Kadota S, Carrico-Moniz D (2011) Pancreatic anticancer activity of a novel geranylgeranylated coumarin derivative. Bioorg Med Chem Lett 19:5770–5773. https://doi.org/10.1016/j.bmcl.2011.08.005

    Article  CAS  Google Scholar 

  3. Joao Matos M, Vazquez-Rodriguez S, Santana L, Uriarte E, Fuentes-Edfuf C, Santos Y, Munoz-Crego A (2012) Looking for new targets: simple coumarins as antibacterial agents. Med Chem 8:1140–1145. https://doi.org/10.2174/1573406411208061140

    Article  Google Scholar 

  4. Nargotra A, Sharma S, Alam MI, Ahmed Z, Bhagat A, Taneja SC, Qazi GN, Koul S (2011) In silico identification of viper phospholipaseA2 inhibitors: validation by in vitro, in vivo studies. J Mol Model 17:3063–3073. https://doi.org/10.1007/s00894-011-0994-7

    Article  CAS  PubMed  Google Scholar 

  5. Chimenti F, Bolasco A, Secci D, Bizzarri B, Chimenti P, Granese A, Carradori S (2010) Synthesis and characterization of new 3-acyl-7-hydroxy-6,8-substituted-coumarin and 3-acyl-7-benzyloxy-6,8-substituted-coumarin derivatives. J Heterocyclic Chem 47:729–732

    CAS  Google Scholar 

  6. Bansal Y, Sethi P, Bansal G (2013) Coumarin: a potential nucleus for anti-inflammatory molecules. Med Chem Res 22:3049–3060. https://doi.org/10.1007/s00044-012-0321-6

    Article  CAS  Google Scholar 

  7. Weight S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2012) Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish Danio rerio embryos. Reprod Toxicol 33:133–141. https://doi.org/10.1016/j.reprotox.2011.07.001

    Article  CAS  Google Scholar 

  8. Valdir CF (2012) Plant bioactive and drug discovery: principles, practice, and perspectives. Wiley, Hoboken, pp 161–166

    Google Scholar 

  9. Amin KM, Awadalla FM, Eissa AA, Abou-Seri SM, Hassan GS (2011) Design, synthesis and vasorelaxant evaluation of novel coumarin–pyrimidine hybrids. Biorg Med Chem 19:6087–6097. https://doi.org/10.1016/j.bmc.2011.08.037

    Article  CAS  Google Scholar 

  10. Basanagouda M, Jambagi VB, Barigidad NN, Laxmeshwar SS, Devaru V (2014) Synthesis, the structure-activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur J Med Chem 74:225–233. https://doi.org/10.1016/j.ejmech.2013.12.061

    Article  CAS  PubMed  Google Scholar 

  11. Lin MH, Cheng CH, Chen KC, Lee WT, Wang YF, Xiao CQ, Lin CW (2014) Induction of ROS-independent JNK-activation-mediated apoptosis by a novel coumarin-derivative DMAC, in human colon cancer cells. Chem Biol Interact 218:42–49. https://doi.org/10.1016/j.cbi.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  12. Saidu NEB, Valente S, Bana E, Kirsch G, Bagrel D, Montenarh M (2012) Coumarin polysulfides inhibit cell growth and induce apoptosis in HCT116 colon cancer cells. Biorg Med Chem 20:1584–1593. https://doi.org/10.1016/j.bmc.2011.12.032

    Article  CAS  Google Scholar 

  13. Geisler J, Sasano H, Chen S, Purohit A (2011) Steroid sulfatase inhibitors: promising new tools for breast cancer therapy? J Stero Biochem Mol Biol 125:39–45. https://doi.org/10.1016/j.jsbmb.2011.02.002

    Article  CAS  Google Scholar 

  14. Al-Wahaibi LH, Abu-Melha HM, Ibrahim DA (2018) Synthesis of novel 1,2,4-triazolyl coumarin derivatives as potential anticancer agents. J Chem. https://doi.org/10.1155/2018/5201374

    Article  Google Scholar 

  15. Abdolmohammadi S, Afsharpour M, Keshavarz-Fatideh S (2014) An efficient green synthesis of 3-amino-1H-chromenes catalysed by ZnO nanoparticles thin-film. S Afr J Chem 67:203–210

    Google Scholar 

  16. Abdolmohammadi S (2018) TiO2 NPs-coated carbone nanotubes as a green and efficient catalyst for the synthesis of [1]benzopyrano[b][1]benzopyranones and xanthenols in water. Comb Chem High Throughput Screen 21:594–601. https://doi.org/10.2174/1386207321666181018164739

    Article  CAS  PubMed  Google Scholar 

  17. Samani A, Abdolmohammadi S, Otaredi-Kashani A (2018) Green synthesis of xanthenone derivatives in aqueous media using TiO2-CNTs nanocomposite as an eco-friendly and re-usable catalyst. Comb Chem High Throughput Screen 21:111–116. https://doi.org/10.2174/1386207321666180219151705

    Article  CAS  PubMed  Google Scholar 

  18. Abdolmohammadi S (2013) Solvent-free synthesis of 4,5-dihydropyrano[c]chromene derivatives over TiO2 nanoparticles as an economical and efficient catalyst. Curr Catal 2:116–121. https://doi.org/10.2174/2211544711302020005

    Article  CAS  Google Scholar 

  19. Fakheri-Vayeghan S, Abdolmohammadi S, Kia-Kojoori R (2018) An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst. Z Naturforsch B 73:545–551. https://doi.org/10.1515/znb-2018-0030

    Article  CAS  Google Scholar 

  20. Chaghari-Farahani F, Abdolmohammadi S, Kia-Kojoori R (2020) PANI-Fe3O4@ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Adv 10:15614–15621. https://doi.org/10.1039/d0ra01978j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abdolmohammadi S, Ghiasi R, Ahmadzadeh-Vatani S (2016) A highly efficient CuI nanoparticles catalyzed synthesis of tetrahydrochromenediones and dihydropyrano[c]chromenediones under grinding. Z Naturforsch B 71:777–782. https://doi.org/10.1515/znb-2015-0195

    Article  CAS  Google Scholar 

  22. Alshabanah LA, Al-Mutabagani LA, Gomha SM, Ahmed HA (2022) Three-component synthesis of some new coumarin derivatives as anticancer agents. Front Chem 9:762248. https://doi.org/10.3389/fchem.2021.762248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang C, Xi D, Wang H, Liang L, Xu F, Peng Y, Xu P (2020) Hybrids of MEK inhibitor and NO donor as multitarget antitumor drugs. Eur J Med Chem 196:112271. https://doi.org/10.1016/j.ejmech.2020.112271

    Article  CAS  PubMed  Google Scholar 

  24. Kamath PR, Sunil D, Ajees A, Pai KSR, Das S (2015) Some new indole–coumarin hybrids; synthesis, anticancer and Bcl-2 docking studies. Bioorg Chem 63:101–109. https://doi.org/10.1016/j.bioorg.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  25. El-Sherief HA, Abu-Rahma GA, Shoman ME, Beshr EA, Abdel-baky RM (2017) Design and synthesis of new coumarin–chalcone/NO hybrids of potential biological activity. Med Chem Res 20:3077–3090. https://doi.org/10.1007/s00044-017-2004-9

    Article  CAS  Google Scholar 

  26. Vasudevan D, Thomas DD (2014) Insights into the diverse effects of nitric oxide on tumor biology. Vitam Horm 96:265–298. https://doi.org/10.1016/B978-0-12-800254-4.00011-8

    Article  CAS  PubMed  Google Scholar 

  27. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumor progression. Nat Rev Cancer 6:521–534. https://doi.org/10.1038/nrc1910

    Article  CAS  PubMed  Google Scholar 

  28. Maciag AE, Holland RJ, Cheng YSR, Rodriguez LG, Saavedra JE, Anderson LM, Keefer LK (2013) Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance. Redox Biol 6:115–124. https://doi.org/10.1016/j.redox.2012.12.002

    Article  CAS  Google Scholar 

  29. Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, Felley-Bosco E, Wang XW, Geller DA, Tzeng E (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci 93:2442–2447. https://doi.org/10.1073/pnas.93.6.2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michel T, Feron O (1997) Nitric oxide synthases: which, where, how, and why? J Clin Invest 100:2146–2152. https://doi.org/10.1172/JCI119750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sessa WC (1994) The nitric oxide synthase family of proteins. J Vasc Res 31:131–143. https://doi.org/10.1159/000159039

    Article  CAS  PubMed  Google Scholar 

  32. El-Sherief HA, Youssif BG, Bukhari SNA, Abdelazeem AH, Abdel-Aziz M, Abdel-Rahman HM (2018) Synthesis, anticancer activity and molecular modeling studies of 1, 2, 4-triazole derivatives as EGFR inhibitors. Eur J Med Chem 156:774–789. https://doi.org/10.1016/j.ejmech.2018.07.024

    Article  CAS  PubMed  Google Scholar 

  33. Gomaa HA, El-Sherief HA, Hussein S, Gouda AM, Salem OI, Alharbi KS, Hayallah AM, Youssif BG (2020) Novel 1, 2, 4-triazole derivatives as apoptotic inducers targeting p53: Synthesis and antiproliferative activity. Bioorg Chem 105:104369. https://doi.org/10.1016/j.bioorg.2020.104369

    Article  CAS  PubMed  Google Scholar 

  34. Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6:157. https://doi.org/10.3389/fgene.2015.00157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang T, Zhang Y, Kong XW, Lai YS, Ji H, Chen YP, Peng SX (2009) Synthesis and biological evaluation of nitric oxide-donating thalidomide analogues as anticancer agents. Chem Biodivers 6(466):474. https://doi.org/10.1002/cbdv.200800014

    Article  Google Scholar 

  36. Sathishkumar N, Sathiyamoorthy S, Ramya M, Yang DU, Lee HN, Yang DC (2012) Molecular docking studies of anti-apoptotic BCL-2, BCL-XL, and MCL-1 proteins with ginsenosides from Panax ginseng. J Enzyme Inhib Med Chem 27(685):692. https://doi.org/10.3109/14756366.2011.608663

    Article  CAS  Google Scholar 

  37. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the l-arginine/nitric oxide area of research. J Chromatogr B 851(51):70. https://doi.org/10.1016/j.jchromb.2006.07.054

    Article  CAS  Google Scholar 

  38. Velázquez C, Praven Rao PN, McDonald R, Knaus EE (2005) Synthesis and biological evaluation of 3,4-diphenyl-1,2,5-oxadiazole-2-oxides and 3,4-diphenyl-1,2,5-oxadiazoles as potential hybrid COX-2 inhibitor/nitric oxide donor agents. Bioorg Med Chem 13(2749):2757. https://doi.org/10.1016/j.bmc.2005.02.034

    Article  CAS  Google Scholar 

  39. Kandil S, Westwell AD (2016) 7-Substituted umbelliferone derivatives as androgen receptor antagonists for the potential treatment of prostate and breast cancer. Bioorg Med Chem Lett 26:2000. https://doi.org/10.1016/j.bmcl.2016.02.088

    Article  CAS  PubMed  Google Scholar 

  40. Behl C, Ziegler C (2013) Cell aging: molecular mechanisms and implications for disease. Springer briefs in molecular medicine. Springer, New York

    Google Scholar 

  41. Abou-Zied HA, Youssif BG, Mohamed MF, Hayallah AM, Abdel-Aziz M (2019) EGFR inhibitors, and apoptotic inducers: design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg chem 89:102997. https://doi.org/10.1016/j.bioorg.2019.102997

    Article  CAS  PubMed  Google Scholar 

  42. Nemr MT, AboulMagd AM, Hassan HM, Hamed AA, Hamed MI, Elsaadi MT (2021) Design, synthesis and mechanistic study of new benzenesulfonamide derivatives as anticancer and antimicrobial agents via carbonic anhydrase IX inhibition. RSC Adv 11(26241):26257. https://doi.org/10.1039/D1RA05277B

    Article  Google Scholar 

  43. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(626):629. https://doi.org/10.1126/science.1099320

    Article  CAS  Google Scholar 

  44. Reed J (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(1378):1386. https://doi.org/10.1038/sj.cdd.4401975

    Article  CAS  Google Scholar 

  45. Green DR (2006) At the gates of death. Cancer Cell 9(328):330. https://doi.org/10.1016/j.ccr.2006.05.004

    Article  CAS  Google Scholar 

  46. Basanagouda M, Jambagi VB, Barigidad NN, Laxmeshwar SS, Devaru V (2014) Synthesis, the structure activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur J Med Chem 74(225):233. https://doi.org/10.1016/j.ejmech.2013.12.061

    Article  CAS  Google Scholar 

  47. Keerthy HK, Manoj Garg M, Mohan CD, Madan V, Kanojia D, Shobith R, Nanjundaswamy S, Mason DJ, Bender A, Basappa RKS, Phillip Koeffler H (2014) Synthesis and characterization of novel 2-amino-chromene-nitriles that target Bcl-2 in acute myeloid leukemia cell lines. PLoS ONE 9:e107118. https://doi.org/10.1371/journal.pone.0107118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nahda University, Beni-Suef, Egypt and Deraya University, Minia, Egypt, for their support.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research Grant No. (DSR-2021-01-0221).

Author information

Authors and Affiliations

Authors

Contributions

Manuscript writing, AMA, HA, MS, OAA, SLA and HH; biological work, chemical work, HA, AMA, SLA, and HH; design and supervision, AMA, OAA, and HA. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Malik Suliman Mohamed or Asmaa M. AboulMagd.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 587 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.S., Elsherief, H.A.M., Hafez, H.M. et al. Synthesis, antiproliferative activity, and molecular modeling of novel 4-methylcoumarin derivatives and/or nitric oxide donor hybrids. Mol Divers 27, 2133–2146 (2023). https://doi.org/10.1007/s11030-022-10547-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10547-w

Keywords

Navigation