Skip to main content
Log in

Application of phenacyl bromide analogs as a versatile organic intermediate for the synthesis of heterocyclic compounds via multicomponent reactions

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Due to the increased interest in heterocyclic compounds over the past decade, many pharmaceutical and organic chemists have explored the synthesis of various materials. Among the many organic compounds that can be synthesized in a wide range of chemical reactions, phenacyl bromide has proven to be a good, inexpensive, versatile, and efficient intermediate. This review presents an overview of the significant applications of phenacyl bromide, focusing on its role in recent synthetic advances and its utility in multicomponent reactions and literature reports for 2017 to the end of 2021.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62

Similar content being viewed by others

References

  1. Zhu M, Ma L, Wen J, Dong B, Wang Y, Wang Z, Zhou J, Zhang G, Wang J, Guo Y, Liang C, Cen S, Wang Y (2020) Rational design and Structure-Activity relationship of coumarin derivatives effective on HIV-1 protease and partially on HIV-1 reverse transcriptase. Eur J Med Chem 186:111900. https://doi.org/10.1016/j.ejmech.2019.111900

    Article  CAS  PubMed  Google Scholar 

  2. Altaf AA, Shahzad A, Gul Z, Rasool N, Badshah A, Lal B, Khan E (2015) A review on the medicinal importance of pyridine derivatives. J Drug Des Med Chem 1:1–11. https://doi.org/10.11648/j.jddmc.20150101.11

    Article  Google Scholar 

  3. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 57:10257–10274. https://doi.org/10.1021/jm501100b

    Article  CAS  PubMed  Google Scholar 

  4. Grygorenko OO, Volochnyuk DM, Vashchenko BV (2021) Emerging building blocks for medicinal chemistry: recent synthetic advances. Eur J Org Chem 47:6478–6510. https://doi.org/10.1002/ejoc.202100857

    Article  CAS  Google Scholar 

  5. Roglans A, Pla-Quintana A, Sola M (2021) Mechanistic studies of transition-metal-catalyzed [2+2 +2] cycloaddition reactions. Chem Rev 121:1894–1979. https://doi.org/10.1021/acs.chemrev.0c00062

    Article  CAS  PubMed  Google Scholar 

  6. Bolton R, Price D, Iddon B, Wakefield BJ (eds) (1988) Bromine compounds: chemistry and applications Elsevier, Amsterdam

  7. Erian AM, Sherif SM, Gaber HM (2003) The chemistry of α-haloketones and their utility in heterocyclic synthesis. Molecules 8:793–865. https://doi.org/10.3390/81100793

    Article  CAS  PubMed Central  Google Scholar 

  8. Volochnyuk DM, Gorlova AO, Grygorenko OO (2021) Saturated boronic acids, boronates, and trifluoroborates: an update on their synthetic and medicinal chemistry. Chem Euro J 27:15277–15326. https://doi.org/10.1002/chem.202102108

    Article  CAS  Google Scholar 

  9. Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057

    Article  CAS  PubMed  Google Scholar 

  10. Arabaci G, Guo XC, Beebe KD, Coggeshall KM, Pei D (1999) Does positive charge at the active sites of phosphatases cause a change in mechanism? The effect of the conserved arginine on the transition state for phosphoryl transfer in the protein-tyrosine phosphatase from yersinia. J Am Chem Soc 121:5085–5086. https://doi.org/10.1021/ja971331n

    Article  CAS  Google Scholar 

  11. Domling A, Ugi I (2009) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. https://doi.org/10.1002/1521-3773(20000915)39:18%3c3168::aid-anie3168%3e3.0.co;2-u

    Article  Google Scholar 

  12. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114:8323–8359. https://doi.org/10.1021/cr400615v

    Article  CAS  PubMed  Google Scholar 

  13. Ghashghaei O, Seghetti F, Lavilla R (2019) Selectivity in multiple multicomponent reactions: types and synthetic applications. Beilstein J Org Chem 15:521–534. https://doi.org/10.3762/bjoc.15.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu J, Wang Q, Wang MX (2015) Multi-component reactions in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  15. Müller TJJ (2014) Multicomponent reactions general discussion and reactions involving a carbonyl compound as electrophilic component science of synthesis series Georg Thieme Verlag KG Stuttgart

  16. Javahershenas R, Majidi Arlan F, Prager RH, Khalafy J (2020) Recent advances in the synthesis of pyrroles via multicomponent reactions using arylglyoxals. Arkivoc. https://doi.org/10.24820/ark.5550190.p011.172

    Article  Google Scholar 

  17. Kargar Razi M, Javahershenas R, Adelzadeh M, Ghobadi M, Kazemi M (2020) Synthetic routes to rhodanine scaffolds. Synth Commun. https://doi.org/10.1080/00397911.2020.1812658

    Article  Google Scholar 

  18. Ghobadi M, Kargar Razi M, Javahershenas R, Kazemi M (2020). Synth Commun. https://doi.org/10.1080/00397911.2020.1819328

    Article  Google Scholar 

  19. Majidi Arlan F, Poursattar Marjani A, Javahershenas R, Khalafy J (2021) Recent developments in the synthesis of polysubstituted pyridines via multicomponent reactions using nanocatalysts. New J Chem 45:12328–12345. https://doi.org/10.1039/D1NJ01801A

    Article  CAS  Google Scholar 

  20. Javahershenas R (2021) Recent applications of aminouracil in multicomponent reactions. Arkivoc. https://doi.org/10.24820/ark.5550190.p011.440

    Article  Google Scholar 

  21. Raut DG, Bhosale RB (2018) One-pot PEG-mediated syntheses of 2-(2-hydrazinyl) thiazole derivatives: novel route. J Sulfur Chem 39:1–7. https://doi.org/10.1080/17415993.2017.1371175

    Article  CAS  Google Scholar 

  22. Hossaini M, Heydari R, Maghsoodlou MT, Kolahdoozan M, Graiff C (2018) Synthesis and crystal structures of novel (4-phenylthiazol-2(3H)-ylidene) benzamide and ((benzoylimino)-3-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-oxothiazolidin-5-ylidene)acetate derivatives. Heteroatom Chem 28(6):e21409. https://doi.org/10.1002/hc.21409

    Article  CAS  Google Scholar 

  23. Kauthale S, Tekale S, Damale M, Sangshetti J, Pawar R (2017) Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg Med Chem Lett 27:3891–3896. https://doi.org/10.1016/j.bmcl.2017.06.043

    Article  CAS  PubMed  Google Scholar 

  24. Shkoor M, Al-Abade A, Aleteiwib I, Al-Talib M, Tashtoush H (2017) Unusual product from the acid-catalyzed one-pot, multicomponent reaction of thiocarbohydrazide, aldehydes, and phenacyl bromides. Synth Commun 47:1471–1477. https://doi.org/10.1080/00397911.2017.1332225

    Article  CAS  Google Scholar 

  25. Tiwari J, Singh S, Tufail F, Jaiswal D, Singh J, Singh J (2018) Glycerol micellar catalysis: an efficient multicomponent-tandem green synthetic approach to biologically important 2, 4-disubstituted thiazole derivatives. J Chem Select 3:11634–11642. https://doi.org/10.1002/slct.201802511

    Article  CAS  Google Scholar 

  26. Sujatha K, Vedula RR (2018) Novel one-pot, expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions. Synth Commun 48:302–308. https://doi.org/10.1080/00397911.2017.1399422

    Article  CAS  Google Scholar 

  27. Gundala TR, Godugu K, Nallagondu RC (2018) Water-mediated one-pot three-component synthesis of hydrazinyl-thiazoles catalyzed by copper oxide nanoparticles dispersed on titanium dioxide support: a green catalytic process. Adv Synth Catal 360:995–1006. https://doi.org/10.1002/adsc.201701063

    Article  CAS  Google Scholar 

  28. Dinne NKR, Mekala R, Reddy SP, Siva GYS, Bannoath ChK (2018) Wang resin-supported sulfonic acid-catalyzed multicomponent reaction in water leading to 4-oxo-4,5,6,7-tetrahydroindole derivatives. Synth Commun 48:1649–1656. https://doi.org/10.1080/00397911.2018.1458240

    Article  CAS  Google Scholar 

  29. Lambat TL, Mahmood SH, Ledade PV, Banerjee S (2020) Microwave assisted one-pot multicomponent synthesis using ZnO-β zeolite nanoparticle: an easy access to 7-Benzodioxolo[4,5-b]xanthene-dione and 4-Oxo-tetrahydroindole Scaffolds. Chem Select 5:8864–8874. https://doi.org/10.1002/slct.202002160

    Article  CAS  Google Scholar 

  30. Singh G, Kumar S, Chowdhury A, Anand RV (2019) Base-mediated one-pot synthesis of oxygen-based heterocycles from 2-hydroxyphenyl-substituted para-quinone methides. J Org Chem 84:15978–15989. https://doi.org/10.1021/acs.joc.9b02455

    Article  CAS  PubMed  Google Scholar 

  31. Mamidala S, Aravilli RK, Vaarla K, Vedula RR (2019) Microwave-assisted synthesis and biological evaluation of some new pyrazolothiazoles via a multicomponent approach. Chem Select 4:9878–9881. https://doi.org/10.1002/slct.201901633

    Article  CAS  Google Scholar 

  32. Ladwa P, Dhuda G, Godhaniya B, Modha JJ (2019) Synthesis of thiazolylazomethine substituted pyrazole derivative using conventional and one pot multicomponent synthetic routes. World Sci News 134:242–257

    CAS  Google Scholar 

  33. Hamedani NF, Ghazvini M, Sheikholeslami-Farahani F, Bagherian-Jamnani MT (2020) ZnO nanorods as efficient catalyst for the green synthesis of thiophene derivatives: Investigation of antioxidant and antimicrobial activity. J Heterocyclic Chem 57:1588–1598. https://doi.org/10.1002/jhet.3884

    Article  CAS  Google Scholar 

  34. Esmaeili-Shahri H, Eshghi H, Lari J, Rounagh S, Esmaeili-Shahri E (2019) Uniform copper nanoparticles as an inexpensive and efficient catalyst for synthesis of novel β-carbonyl-1, 2,3-triazoles in water medium. Res Chem Intermed 45:2963–2979. https://doi.org/10.1007/s11164-019-03773-9

    Article  CAS  Google Scholar 

  35. Jangid DK, Dhadda S (2019) Phenacyl bromide: an organic intermediate for synthesis of five- and six-membered bioactive heterocycles.https://doi.org/10.5772/intechopen.88243

  36. Deshineni R, Velpula R, Koppu S, Pilli J, Chellamella G (2020) One-pot multicomponent synthesis of novel ethyl-2-(3-((2-(4-(4-aryl)thiazol-2-yl)hydrazono)methyl)-4-hydroxy/isobutoxyphenyl)-4-methylthiazole-5-carboxylate derivatives and evaluation of their in vitro antimicrobial activity. J Heterocycl Chem 57:1361–1367. https://doi.org/10.1002/jhet.3872

    Article  CAS  Google Scholar 

  37. Bodhak Ch, Pramanik A (2019) Three-component synthesis of 5-sulfenyl-2-iminothiazolines by cross-dehydrogenative C-S coupling using I2/DMSO in open air. J Org Chem 84:7265–7278. https://doi.org/10.1021/acs.joc.9b00785

    Article  CAS  PubMed  Google Scholar 

  38. Barve IJ, Chang W-J, Lin Y-T, Thikekar TU, Sun C-M (2019) Base controlled three-component regioselective synthesis of 2-imino thiazolines and 2-thioxoimidazolin-4-ones. ACS Comb Sci 21:269–275. https://doi.org/10.1021/acscombsci.8b00152

    Article  CAS  PubMed  Google Scholar 

  39. Lambat TL, Abdala AA, Mahmood S, Ledade PV, Chaudhary RG, Banerjee S (2019) Sulfamic acid promoted one-pot multicomponent reaction: a facile synthesis of 4-oxo-tetrahydroindoles under ball milling conditions. RSC Adv 9:39735–39742. https://doi.org/10.1039/c9ra08478a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Debnath S, Das T, Pati TK, Majumdar S, Maiti DK (2020) Metal-free indole-phenacyl bromide cyclization: a regioselective synthesis of 3,5-diarylcarbazoles. J Org Chem 85:13272–13279. https://doi.org/10.1021/acs.joc.0c01670

    Article  CAS  PubMed  Google Scholar 

  41. Ansari Kh, Nazeef M, Ali Sh, Waseem MA, Shah WA, Ansari S, Siddiqui IR, Singh J (2021) A metal-free visible light promoted three-component facile synthesis of 4-oxo-tetrahydroindoles in ethanol-water. J Heterocycl Chem 58:622–629. https://doi.org/10.1002/jhet.4202

    Article  CAS  Google Scholar 

  42. Dhananjaya G, Rao AVD, Hossain KA, Anna VR, Pal M (2020) In silico studies and b-cyclodextrin mediated neutral synthesis of 4-oxo-4,5,6,7-tetrahydroindoles of potential biological interest. Tetrahedron Lett 61:151972–151979. https://doi.org/10.1016/j.tetlet.2020.151972

    Article  CAS  Google Scholar 

  43. Sayed AR, Gomha SM, Taher EA, Muhammad ZA, El-Seedi HR, Gaber HM, Ahmed MM (2020) One-pot synthesis of novel thiazoles as potential anti-cancer agents. Drug Des Dev Ther 14:1363–1375. https://doi.org/10.2147/DDDT.S221263

    Article  CAS  Google Scholar 

  44. Sadjadi S (2020) Magnetic functionalized graphene: an efficient and solid acid catalyst for the synthesis of highly functionalized pyrroles under ultrasound irradiation. Adv Nanochem 1:15–20. https://doi.org/10.22126/anc.2019.4787.1017

    Article  Google Scholar 

  45. Punia S, Verma V, Kumar D, Singh G, Sahoo CS (2020) Regioselective synthesis of 1,2,4-trisubstituted imidazole from a mechanistic and synthetic prospective. Synth Commun 50:700–709. https://doi.org/10.1080/00397911.2020.1712608

    Article  CAS  Google Scholar 

  46. Mamidala S, Mudigunda VS, Peddi SR, Bokara KK, Manga V, Vedula RR (2020) Design and synthesis of new thiazoles by microwave-assisted method: evaluation as an anti-breast cancer agents and molecular docking studies. Synth Commun 54:2488–2501. https://doi.org/10.1080/00397911.2020.1781184

    Article  CAS  Google Scholar 

  47. Mamidalaa S, Aravilli RK, Rameshc G, Khajavali Sh, Chedupakaa R, Mangad V, Vedulaa RR (2021) A facile one-pot, three-component synthesis of a new series of thiazolyl pyrazole carbaldehydes: In vitro anticancer evaluation, in silico ADME/T, and molecular docking studies. J Mole Struct 1236:130356–130368. https://doi.org/10.1016/j.molstruc.2021.130356

    Article  CAS  Google Scholar 

  48. Alizadeh A, Roosta A (2018) Synthesis of a new series of aryl(thieno[2,3-b]quinolin-2-yl)methanone and 2-(2-aroyl-2,3-dihydrothieno[2,3-b]quinolin-3-yl)-1-arylethanone derivatives via sequential multi-component reaction. Chem Pap 72:2467–2478. https://doi.org/10.1007/s11696-018-0497-4

    Article  CAS  Google Scholar 

  49. Alavi S, Mosslemin MH, Mohebat R, Massah AR (2017) Green synthesis of novel quinoxaline sulfonamides with antibacterial activity. Res Chem Intermed 43:4549–4559. https://doi.org/10.1007/s11164-017-2895-6

    Article  CAS  Google Scholar 

  50. Khanghah PF, Souri S (2020) Synthesis of phosphonate derivatives using multicomponent reaction of alkyl bromides. Iran J Org Chem 12:2849–2853

    Google Scholar 

  51. Kushwaha ND, Kushwaha B, Karpoormath RV, Mahlalela MC, Shinde SR (2020) One-pot, multicomponent, diastereoselective, green synthesis of 3,4-dihydro-2H-benzo[b][1,4]oxazine analogues. J Org Chem 85(12):8221–8229. https://doi.org/10.1021/acs.joc.0c00463

    Article  CAS  PubMed  Google Scholar 

  52. Balalaie S, Derakhshan-Panaha F, Zolfigol MA, Romingerd F (2018) A convenient method for the synthesis of Imidazo[1,2-a]pyridines with a new approach. Synlett 29:89–93. https://doi.org/10.1055/s-0036-1590906

    Article  CAS  Google Scholar 

  53. Tufail F, Singh S, Saquib M, Tiwari J, Singh J, Singh J (2017) Catalyst-free, glycerol-assisted facile approach to imidazole-fused nitrogen-bridgehead heterocycles. Chem Select 2:6082–6089. https://doi.org/10.1002/slct.201700557

    Article  CAS  Google Scholar 

  54. Sujatha K, Deshpande RP, Kesharwani RK, Babu PhP, Vedula RR (2019) An efficient one-pot expeditious synthesis of 3- phenyl-1-(6-phenyl-7H-[1,2,4] triazolo[3,4-b] [1,3,4] thiadiazin-3-yl)-1H-pyrazol-5-amines via multicomponent approach. Synth Commun 49:49–55. https://doi.org/10.1080/00397911.2018.1537398

    Article  CAS  Google Scholar 

  55. Arandkar V, Vedula RR (2019) A facile one-pot expeditious synthesis of triazolothiadiazines and anticancer activity. Phosphorus Sulfur Silicon Relat Elem 194:533–539. https://doi.org/10.1080/10426507.2018.1542394

    Article  CAS  Google Scholar 

  56. Reddy RJ, Angothu Sh, Kumari H (2019) An efficient sequential one-pot approach for the synthesis of C3-functionalized Imidazo[1,2-a]pyridines under transition-metal free conditions. Asian J Org Chem. https://doi.org/10.1002/ajoc.201900606

    Article  Google Scholar 

  57. Rao RN, Balamurali MM, Maiti B, Thakuria R, Chanda K (2018) Efficient access to imidazo[1,2-a]pyridines/pyrazines/pyrimidines via catalyst free annulation reaction under microwave irradiation in green solvent. ACS Comb Sci 20:164–171. https://doi.org/10.1021/acscombsci.7b00173

    Article  CAS  PubMed  Google Scholar 

  58. Sanin IA, Zubarev AA, Yu RA, Rodinovskaya LA, Batuev EA, Shestopalova AM (2018) New quinolone- and isoquinoline-based multicomponent methods for the synthesis of 1,1(3,3)-dicyanotetrahydrobenzoindolizines. Russ Chem Bull 67:297–303. https://doi.org/10.1007/s11172-018-2073-z

    Article  CAS  Google Scholar 

  59. Veer B, Singh R (2019) Facile synthesis of 2-arylimidazo[1,2-a]pyridines catalysed by DBU in aqueous ethanol. Proc R Soc A 475:20190238. https://doi.org/10.1098/rspa.20190238

    Article  Google Scholar 

  60. Sujatha K, Vedula RR (2019) Multicomponent efficient synthesis of new [1,2,4]Triazolo[3,4]thiadiazines. J Heterocycl Chem 56:1111–1116. https://doi.org/10.1002/jhet.3458

    Article  CAS  Google Scholar 

  61. Mohamadya S, Gibriel AA, Ahmedd MS, Hendya MS, Naguib BH (2020) Design and novel synthetic approach supported with molecular docking and biological evidence for naphthoquinone-hydrazinotriazolothiadiazine analogs as potential anticancer inhibiting topoisomerase-IIB. Bioorg Chem 96:103641–103649. https://doi.org/10.1016/j.bioorg.2020103641

    Article  Google Scholar 

  62. Yoon SH, Kim SJ, Kim I (2020) One-pot four-component coupling approach to polyheterocycles: 6H-Furo[3,2-f]pyrrolo[1,2-d][1,4]diazepine. J Org Chem 85:15082–15091. https://doi.org/10.1021/acs.joc.0c01971

    Article  CAS  PubMed  Google Scholar 

  63. Dhas A, Deshmukh S, Pansare D, Pawar R, Kakade G (2021) Synthesis of Imidazo[1,2-a]Pyridine derivatives using copper silicate as an efficient and reusable catalyst. Lett Appl Nano Bio Sci 10:2565–2570. https://doi.org/10.33263/LIANBS103.25652570

    Article  Google Scholar 

  64. Jillojua ShCh, Jillojuc PCh, Jatavatha M, Raoa MA (2021) Characterization and molecular docking studies of substituted 3-(2-benzylidenehydrazinyl)-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines synthesized via a one-pot, three-component reaction. J Mol Struct 1237:130403–130411. https://doi.org/10.1016/j.molstruc.2021.130403

    Article  CAS  Google Scholar 

  65. Sun J, Yang R-Y, Yan C-G (2017) One-pot reaction for the convenient synthesis of functionalized 2-oxaspiro[bicyclo[2.2.1]heptane-2,3’-indolines]. Chem Select 2:304–308. https://doi.org/10.1002/slct.201600929

    Article  CAS  Google Scholar 

  66. Talebizadeh M, Anary-Abbasinejad M, Darekordi A (2019) A simple synthesis of trifluoromethylated pyridinium azomethine ylides by three-component reaction between pyridines, phenacyl bromides, and N-aryltrifluoroacetimidoyl chlorides. Chem Heterocycl Comp 55:235–239. https://doi.org/10.1007/s10593-019-02447-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful for the support of this work from the University of Urmia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Javahershenas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javahershenas, R. Application of phenacyl bromide analogs as a versatile organic intermediate for the synthesis of heterocyclic compounds via multicomponent reactions. Mol Divers 27, 2399–2430 (2023). https://doi.org/10.1007/s11030-022-10544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10544-z

Keywords

Navigation