Skip to main content

Advertisement

Log in

Design, combinatorial synthesis and cytotoxic activity of 2-substituted furo[2,3-d]pyrimidinone and pyrrolo[2,3-d]pyrimidinone library

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A facile protocol was developed for the combinatorial synthesis of furo[2,3-d]pyrimidinone and pyrrolo[2,3-d]pyrimidinone library via a one-pot condensation, from 2-amino furans/pyrroles. Herein reported process required a similar reaction condition, providing mild access to two diverse series of natural product-like heterocycles. Both furo[2,3-d]pyrimidinones and pyrrolo[2,3-d]pyrimidinones were evaluated in vitro against a panel of human cancer cell lines including against human cancer HeLa (cervical), MCF-7 (breast) and HT-29 (colon) cell lines. Derivative 12n ((2-(4-chlorophenyl)-1-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrrolo[2,3-d]pyrimidin-4(1H)-one)) showed high activity (IC50 = 6.55 ± 0.31 µM) against the HeLa cell line. These products could be subjected to a various modification and therefore represent important skeletons for the anticancer drug discovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 3

Similar content being viewed by others

References

  1. Sharmin S, Rahaman MM, Martorell M, Sastre-Serra J, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV, Islam MT (2021) Cytotoxicity of synthetic derivatives against breast cancer and multi-drug resistant breast cancer cell lines: a literature-based perspective study. Cancer Cell Int 21(1):612. https://doi.org/10.1186/s12935-021-02309-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Mir MM, Jamal F, Masoodi T, Uddin S, Singh M, Haris M, Macha M, Bhat AA (2022) Targeting cancer signaling pathways by natural products: exploring promising anti-cancer agents. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2022.113054

    Article  PubMed  Google Scholar 

  3. Yan X, Yang L, Feng G, Yu Z, Xiao M, Cai W, Xing Y, Bai S, Guo J, Wang Z, Wang T, Zhang R (2018) Lup-20(29)-en-3β,28-di-yl-nitrooxy acetate affects MCF-7 proliferation through the crosstalk between apoptosis and autophagy in mitochondria. Cell Death Dis 9(2):241. https://doi.org/10.1038/s41419-017-0255-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bozorov K, Zhao JY, Nie LF, Ma HR, Bobakulov K, Hu R, Rustamova N, Huang G, Efferth T, Aisa HA (2017) Synthesis and: In vitro biological evaluation of novel diaminothiophene scaffolds as antitumor and anti-influenza virus agents. Part 2. RSC Adv 7(50):31417–31427. https://doi.org/10.1039/c7ra04808d

    Article  CAS  Google Scholar 

  5. Lin K, Zhang X, Dai X, Ma L, Bozorov K, Guo H, Huang G, Cao J (2021) Synthesis and anticancer activity of podophyllotoxin derivatives. Chem Nat Compd 57(6):1010–1018. https://doi.org/10.1007/s10600-021-03539-z

    Article  CAS  Google Scholar 

  6. Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF, Schenck RJ, Trippe AJ (2008) Structural diversity of organic chemistry. A Scaffold analysis of the CAS registry. J Org Chem 73(12):4443–4451. https://doi.org/10.1021/jo8001276

    Article  CAS  PubMed  Google Scholar 

  7. Lutz MW, Menius JA, Choi TD, Gooding Laskody R, Domanico PL, Goetz AS, Saussy DL (1996) Experimental design for high-throughput screening. Drug Discov Today 1(7):277–286. https://doi.org/10.1016/1359-6446(96)10025-8

    Article  CAS  Google Scholar 

  8. Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 79:563–590. https://doi.org/10.1146/annurev-biochem-062608-095938

    Article  CAS  PubMed  Google Scholar 

  9. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9(2):91–102. https://doi.org/10.1007/s12551-016-0247-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z (2019) Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur J Med Chem 163:883–895. https://doi.org/10.1016/j.ejmech.2018.12.035

    Article  CAS  PubMed  Google Scholar 

  11. Nadin A, Hattotuwagama C, Churcher I (2012) Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew Chem Int Ed 51(5):1114–1122. https://doi.org/10.1002/anie.201105840

    Article  CAS  Google Scholar 

  12. Rodrigues T, Reker D, Schneider P, Schneider G (2016) Counting on natural products for drug design. Nat Chem 8(6):531–541. https://doi.org/10.1038/nchem.2479

    Article  CAS  PubMed  Google Scholar 

  13. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15(9):605–619. https://doi.org/10.1038/nrd.2016.109

    Article  CAS  PubMed  Google Scholar 

  14. Hu Y, Stumpfe D, Bajorath J (2017) Recent advances in Scaffold hopping. J Med Chem 60(4):1238–1246. https://doi.org/10.1021/acs.jmedchem.6b01437

    Article  CAS  PubMed  Google Scholar 

  15. Sun H, Tawa G, Wallqvist A (2012) Classification of scaffold-hopping approaches. Drug Discov Today 17(7):310–324. https://doi.org/10.1016/j.drudis.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  16. Mauser H, Guba W (2008) Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 11(3):365–374

    CAS  PubMed  Google Scholar 

  17. Renner S, Schneider G (2006) Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 1(2):181–185. https://doi.org/10.1002/cmdc.200500005

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Deng Y, Wu Y, Kim B, LeBard DN, Wandschneider D, Beachy M, Friesner RA, Abel R (2017) Accurate modeling of scaffold hopping transformations in drug discovery. J Chem Theory Comput 13(1):42–54. https://doi.org/10.1021/acs.jctc.6b00991

    Article  CAS  PubMed  Google Scholar 

  19. Wetzel S, Bon RS, Kumar K, Waldmann H (2011) Biology-oriented synthesis. Angew Chem Int Ed 50(46):10800–10826. https://doi.org/10.1002/anie.201007004

    Article  CAS  Google Scholar 

  20. Carr RAE, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10(14):987–992. https://doi.org/10.1016/S1359-6446(05)03511-7

    Article  CAS  PubMed  Google Scholar 

  21. Knehans T, Schüller A, Doan DN, Nacro K, Hill J, Güntert P, Madhusudhan MS, Weil T, Vasudevan SG (2011) Structure-guided fragment-based in silico drug design of dengue protease inhibitors. J Comput Aided Mol Des 25(3):263–274. https://doi.org/10.1007/s10822-011-9418-0

    Article  CAS  PubMed  Google Scholar 

  22. Doak BC, Norton RS, Scanlon MJ (2016) The ways and means of fragment-based drug design. Pharmacol Ther 167:28–37. https://doi.org/10.1016/j.pharmthera.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  23. Liu R, Li X, Lam KS (2017) Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 38:117–126. https://doi.org/10.1016/j.cbpa.2017.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103(3):893–930. https://doi.org/10.1021/cr020033s

    Article  CAS  PubMed  Google Scholar 

  25. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd 48(1):7–10. https://doi.org/10.1007/s10593-012-0960-z

    Article  CAS  Google Scholar 

  26. Poulie CBM, Bunch L (2013) Heterocycles as nonclassical bioisosteres of α-amino acids. ChemMedChem 8(2):205–215. https://doi.org/10.1002/cmdc.201200436

    Article  CAS  PubMed  Google Scholar 

  27. O’Leary EM, Jones DJ, O’Donovan FP, O’Sullivan TP (2015) Synthesis of fluorinated oxygen- and sulfur-containing heteroaromatics. J Fluor Chem 176:93–120. https://doi.org/10.1016/j.jfluchem.2015.06.002

    Article  CAS  Google Scholar 

  28. Nasrullaev A, Bozorov K, Bobakulov K, Zhao J, Nie LF, Turgunov KK, Elmuradov B, Aisa HA (2019) Synthesis, characterization, and antimicrobial activity of novel hydrazone-bearing tricyclic quinazolines. Res Chem Intermed 45(4):2287–2300. https://doi.org/10.1007/s11164-018-03731-x

    Article  CAS  Google Scholar 

  29. Nie LF, Bozorov K, Huang G, Zhao J, Niu C, Aisa HA (2018) Design, synthesis, and toward a side-ring optimization of tricyclic thieno[2,3-d]pyrimidin-4(3H)-ones and their effect on melanin synthesis in murine B16 cells. Phosphorus Sulfur Silicon Relat Elem 193(10):656–667. https://doi.org/10.1080/10426507.2018.1487968

    Article  CAS  Google Scholar 

  30. Liu F, Hou X, Nie LF, Bozorov K, Decker M, Huang G (2018) A convenient one-pot synthesis of 2,3-disubstituted thieno[2,3- d ]pyrimidin-4(3 H)-ones from 2 H-thieno[2,3- d ][1,3]oxazine-2,4(1 H)-diones, aromatic aldehydes and amines. SynOpen 2(2):207–212. https://doi.org/10.1055/s-0037-1610157

    Article  CAS  Google Scholar 

  31. Nie LF, Huang G, Bozorov K, Zhao J, Niu C, Sagdullaev SS, Aisa HA (2018) Diversity-oriented synthesis of amide derivatives of tricyclic thieno[2,3-d]pyrimidin-4(3H)-ones and evaluation of their influence on melanin synthesis in murine B16 cells. Heterocycl Commun 24(1):43–50. https://doi.org/10.1515/hc-2017-0256

    Article  CAS  Google Scholar 

  32. Nie LF, Bozorov K, Niu C, Huang G, Aisa HA (2017) Synthesis and biological evaluation of novel sulfonamide derivatives of tricyclic thieno[2,3-d]pyrimidin-4(3H)-ones on melanin synthesis in murine B16 cells. Res Chem Intermed 43(12):6835–6843. https://doi.org/10.1007/s11164-017-3023-3

    Article  CAS  Google Scholar 

  33. Bozorov K, Zhao JY, Aisa HA (2017) Recent advances in ipso-nitration reactions. Arkivoc 1:41–66. https://doi.org/10.3998/ark.5550190.p009.852

    Article  CAS  Google Scholar 

  34. Zeng Y, Nie L, Bozorov K, Ruzi Z, Song B, Zhao J, Aisa HA (2022) 2-substituted tricyclic oxazolo[5,4-d]pyrimidine library: Design, synthesis, and cytotoxicity activity. J Heterocycl Chem 59(3):555–568. https://doi.org/10.1002/jhet.4401

    Article  CAS  Google Scholar 

  35. Zeng Y, Nie L, Niu C, Mamatjan A, Bozorov K, Zhao J, Aisa HA (2022) Synthesis and biological activities of dihydrooxazolo[5,4-d]-pyrrolo[1,2-a]pyrimidinones. Chin J Org Chem 42(2):543–556. https://doi.org/10.6023/cjoc202107002

    Article  CAS  Google Scholar 

  36. Bozorov KA, Mamadalieva NZ, Elmuradov BZ, Triggiani D, Egamberdieva D, Tiezzi A, Aisa HA (2013) Shakhidoyatov KM (2013) Synthesis of substituted thieno[2,3- D ]pyrimidin-4-ones and their testing for evaluation of cytotoxic activity on mammalian cell models. J Chem 2013:1–6. https://doi.org/10.1155/2013/976715

    Article  CAS  Google Scholar 

  37. Zeng Y, Nie L, Liu L, Niu C, Li Y, Bozorov K, Zhao J, Shen J, Aisa HA (2022) Design, synthesis, in vitro evaluation of a new pyrrolo[1,2-a]thiazolo[5,4-d]pyrimidinone derivatives as cholinesterase inhibitors against Alzheimer’s disease. J Heterocycl Chem 59(6):1086–1101. https://doi.org/10.1002/jhet.4452

    Article  CAS  Google Scholar 

  38. Shakhidoyatov KM, Ibragimov TF, Mukhamedov NS (2010) Reaction of deoxyvasicinone with organolithium compounds. Chem Nat Compd 46(4):598–599. https://doi.org/10.1007/s10600-010-9684-4

    Article  CAS  Google Scholar 

  39. García-Ramírez J, Miranda LD (2021) Peroxide-mediated oxidative radical cyclization to the quinazolinone system: efficient syntheses of deoxyvasicinone, mackinazolinone and (±)-leucomidine C. Synthesis 53(8):1471–1477. https://doi.org/10.1055/s-0040-1705975

    Article  CAS  Google Scholar 

  40. Liu JF, Ye P, Sprague K, Sargent K, Yohannes D, Baldino CM, Wilson CJ, Ng SC (2005) Novel one-pot total syntheses of deoxyvasicinone, mackinazolinone, isaindigotone, and their derivatives promoted by microwave irradiation. Org Lett 7(15):3363–3366. https://doi.org/10.1021/ol0513084

    Article  CAS  PubMed  Google Scholar 

  41. Chernyshov VV, Yarovaya OI, Fadeev DS, Gatilov YV, Esaulkova YL, Muryleva AS, Sinegubova KO, Zarubaev VV, Salakhutdinov NF (2020) Single-stage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity. Mol Divers 24(1):61–67. https://doi.org/10.1007/s11030-019-09932-9

    Article  CAS  PubMed  Google Scholar 

  42. Tojiboev A, Zhurakulov S, Vinogradova V, Englert U, Wang R (2021) Crystal structure, Hirshfeld surface analysis and energy framework study of 6-formyl-7,8,9,11-tetrahydro-5H-pyrido[2,1-b]quinazolin-11-one. Acta Crystallogr E 77(1):47–51. https://doi.org/10.1107/S2056989020016059

    Article  CAS  Google Scholar 

  43. Ma F, Du H (2017) Novel deoxyvasicinone derivatives as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: Design, synthesis, and biological evaluation. Eur J Med Chem 140:118–127. https://doi.org/10.1016/j.ejmech.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  44. Du H, Jiang X, Ma M, Xu H, Liu S, Ma F (2020) Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem Lett 30(24):127. https://doi.org/10.1016/j.bmcl.2020.127659

    Article  CAS  Google Scholar 

  45. Du H, Liu X, Xie J, Ma F (2019) Novel deoxyvasicinone-donepezil hybrids as potential multitarget drug candidates for Alzheimer’s disease. ACS Chem Neurosci 10(5):2397–2407. https://doi.org/10.1021/acschemneuro.8b00699

    Article  CAS  PubMed  Google Scholar 

  46. Yu Q, Jiang Y, Sun Y (2020) Anticancer drug discovery by targeting cullin neddylation. Acta Pharm Sin B 10(5):746–765. https://doi.org/10.1016/j.apsb.2019.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Zhong HJ, Leung KH, Lin S, Chan DSH, Han QB, Chan SLF, Ma DL, Leung CH (2015) Discovery of deoxyvasicinone derivatives as inhibitors of NEDD8-activating enzyme. Methods 71:71–76. https://doi.org/10.1016/j.ymeth.2014.08.014

    Article  CAS  PubMed  Google Scholar 

  48. Elgaher WAM, Fruth M, Groh M, Haupenthal J, Hartmann RW (2014) Expanding the scaffold for bacterial RNA polymerase inhibitors: design, synthesis and structure-activity relationships of ureido-heterocyclic-carboxylic acids. RSC Adv 4(5):2177–2194. https://doi.org/10.1039/c3ra45820b

    Article  CAS  Google Scholar 

  49. Toja E, Depaoli A, Tuan G, Kettenring J (1987) Synthesis of 2-amino-3-ethoxycarbonylpyrroles. Synthesis 03:272–274

    Article  Google Scholar 

  50. Ruzi Z, Nie L, Bozorov K, Zhao J, Aisa HA (2021) Synthesis and anticancer activity of ethyl 5-amino-1-N-substituted-imidazole-4-carboxylate building blocks. Arch Pharm. https://doi.org/10.1002/ardp.202000470

    Article  Google Scholar 

  51. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2020YFE0205600), and by “CAM Resources Data Base” in National Basic Science Data Center (No. NBSDC-DB-19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangyu Zhao or Haji Akber Aisa.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3628 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Nie, L., Bozorov, K. et al. Design, combinatorial synthesis and cytotoxic activity of 2-substituted furo[2,3-d]pyrimidinone and pyrrolo[2,3-d]pyrimidinone library. Mol Divers 27, 1767–1783 (2023). https://doi.org/10.1007/s11030-022-10529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10529-y

Keywords

Navigation