Skip to main content
Log in

Homology modeling of Forkhead box protein C2: identification of potential inhibitors using ligand and structure-based virtual screening

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Overexpression of Forkhead box protein C2 (FOXC2) has been associated with different types of carcinomas. FOXC2 plays an important role in the initiation and maintenance of the epithelial–mesenchymal transition (EMT) process, which is essential for the development of higher-grade tumors with an enhanced ability for metastasis. Thus, FOXC2 has become a therapeutic target for the development of anticancer drugs. MC-1-F2, the only identified experimental inhibitor of FOXC2, interacts with the full length of FOXC2. However, only the DNA-binding domain (DBD) of FOXC2 has resolved crystal structure. In this work, a three-dimensional (3D) structure of the full-length FOXC2 using homology modeling was developed and used for structure-based drug design (SBDD). The quality of this 3D model of the full-length FOXC2 was evaluated using MolProbity, ERRAT, and ProSA modules. Molecular dynamics (MD) simulation was also carried out to verify its stability. Ligand-based drug design (LBDD) was carried out to identify similar analogues for MC-1-F2 against 15 million compounds from ChEMBL and ZINC databases. 792 molecules were retrieved from this similarity search. De novo SBDD was performed against the full-length 3D structure of FOXC2 through homology modeling to identify novel inhibitors. The combination of LBDD and SBDD helped in gaining a better insight into the binding of MC-1-F2 and its analogues against the full length of the FOXC2. The binding free energy of the top hits was further investigated using MD simulations and MM/GBSA calculations to result in eight promising hits as lead compounds targeting FOXC2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kalluri R, Neilson EG et al (2003) Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784. https://doi.org/10.1172/JCI20530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalluri R, Weinberg RA et al (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428. https://doi.org/10.1172/JCI39104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsai JH, Yang J (2013) Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206. https://doi.org/10.1101/gad.225334.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitra A, Mishra L, Li S (2015) EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 6:10697–10711. https://doi.org/10.18632/oncotarget.4037

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sato R, Semba T, Saya H, Arima Y (2016) Concise review: stem cells and epithelial–mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells 34:1997–2007. https://doi.org/10.1002/stem.2406

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700. https://doi.org/10.1016/S0092-8674(03)00432-X

    Article  CAS  PubMed  Google Scholar 

  7. Medici D, Hay ED, Olsen BR (2008) Snail and Slug promote epithelial-mesenchymal transition through β-catenin–T-cell factor-4-dependent expression of transforming growth factor-β3. Mol Biol Cell 19:4875–4887. https://doi.org/10.1074/jbc.M111.276311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A (2008) Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 182:315–325. https://doi.org/10.1083/jcb.200710067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mani SA, Yang J, Brooks M, Weinberg RA (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104:10069–10074. https://doi.org/10.1073/pnas.0703900104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen X et al (2019) Structural basis for DNA recognition by FOXC2. Nucleic Acids Res 47:3752–3764. https://doi.org/10.1093/nar/gkz077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golson ML, Kaestner KH (2016) Fox transcription factors: from development to disease. Development 143:4558–4570. https://doi.org/10.1242/dev.112672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420. https://doi.org/10.1038/364412a0

    Article  CAS  PubMed  Google Scholar 

  13. Brent MM, Anand R, Marmorstein R (2008) Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16:1407–1416. https://doi.org/10.1016/j.bbamcr.2010.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boura E, Rezabkova L, Brynda J, Obsilova V, Obsil T (2010) Structure of the human FOXO4-DBD–DNA complex at 1.9 Å resolution reveals new details of FOXO binding to the DNA. Acta Crystallogr D Biol Crystallogr 66:1351–1357. https://doi.org/10.1107/s0907444910042228

    Article  CAS  PubMed  Google Scholar 

  15. Littler DR, Alvarez-Fernández M, Stein A, Hibbert RG, Heidebrecht T, Aloy P, Medema RH, Perrakis A (2010) Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res 38:4527–4538. https://doi.org/10.1093/nar/gkq194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh P, Han EH, Endrizzi JA, O’Brien RM, Chi Y-I (2017) Crystal structures reveal a new and novel FoxO1 binding site within the human glucose-6-phosphatase catalytic subunit 1 gene promoter. J Struct Biol 198:54–64. https://doi.org/10.1016/j.jsb.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW (2000) Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67:1382–1388. https://doi.org/10.1086/316915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell R, Brice G, Child A, Murday V, Mansour S, Sandy C, Collin J, Brady A, Callen D, Burnand K, Mortimer P, Jeffery S (2001) Analysis of lymphoedema-distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene. Hum Genet 108:546–551. https://doi.org/10.1007/s004390100528

    Article  CAS  PubMed  Google Scholar 

  19. Yu M et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584. https://doi.org/10.1126/science.1228522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang T, Zheng L, Wang Q, Hu Y-W (2018) Emerging roles and mechanisms of FOXC2 in cancer. Clin Chim Acta 479:84–93. https://doi.org/10.1186/s12935-020-01265-0

    Article  CAS  PubMed  Google Scholar 

  21. Xia L et al (2013) Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology 57:610–624. https://doi.org/10.1002/hep.26029

    Article  CAS  PubMed  Google Scholar 

  22. Hollier BG et al (2013) FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res 73:1981–1992. https://doi.org/10.1158/0008-5472.CAN-12-2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Werden SJ et al (2016) Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth. Oncogene 35:5977–5988. https://doi.org/10.1038/onc.2016.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu YH et al (2013) MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene 32:431–443. https://doi.org/10.1038/onc.2012.74

    Article  CAS  PubMed  Google Scholar 

  25. Castaneda M, Chen L, Pradhan L, Li S, Zein R (2018) A Forkhead box protein C2 inhibitor: targeting epithelial–mesenchymal transition and cancer metastasis. ChemBioChem 19:1359–1364. https://doi.org/10.1002/cbic.201800022

    Article  CAS  PubMed  Google Scholar 

  26. Awale M, Reymond J-L (2014) A multi-fingerprint browser for the ZINC database. Nucleic Acids Res 42:W234–W239. https://doi.org/10.1093/nar/gku379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. https://doi.org/10.1021/ci3001277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  29. Hagadone TR (1992) Molecular substructure similarity searching: efficient retrieval in two-dimensional structure databases. J Chem Inf Comput Sci 32:515–521. https://doi.org/10.1021/ci00009a019

    Article  CAS  Google Scholar 

  30. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, Overington JP (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 43:W612–W620. https://doi.org/10.1093/nar/gkv352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B (2009) KNIME—the Konstanz information miner: version 2.0 and beyond. ACM SIGKDD Explor Newsl 11:26–31. https://doi.org/10.1145/1656274.1656280

    Article  Google Scholar 

  32. Borgelt C, Meinl T (2009) Full perfect extension pruning for frequent subgraph mining. In: Zighed DA, Tsumoto S, Ras ZW, Hacid H (eds) Mining complex data, vol 165. Studies in computational intelligence. Springer, Berlin, pp 189–205. https://doi.org/10.1007/978-3-540-88067-7_11

    Chapter  Google Scholar 

  33. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Kolinski A, Skolnick J (2003) TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 85:1145–1164. https://doi.org/10.1016/S0006-3495(03)74551-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Kihara D, Skolnick J (2002) Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins Struct Funct Bioinform 48:192–201. https://doi.org/10.1002/prot.10141

    Article  CAS  Google Scholar 

  36. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

    Article  CAS  PubMed  Google Scholar 

  37. Williams CJ et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315. https://doi.org/10.1002/pro.3330

    Article  CAS  PubMed  Google Scholar 

  38. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Bioinform 17:355–362. https://doi.org/10.1002/prot.340170404

    Article  CAS  Google Scholar 

  40. Wiederstein M, Sippl MJ (2007) ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  43. Eastman P, Pande V (2010) OpenMM: A hardware-independent framework for molecular simulations. Comput Sci Eng 12:34–39. https://doi.org/10.1109/MCSE.2010.27

    Article  CAS  PubMed Central  Google Scholar 

  44. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  45. McGibbon RT et al (2015) MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109:1528–1532. https://doi.org/10.1016/j.bpj.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McGann M (2012) FRED pose prediction and virtual screening accuracy. J Chem Inf Model 51:578–596. https://doi.org/10.1021/ci100436p

    Article  CAS  Google Scholar 

  47. McGann M (2012) FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des 26:897–906. https://doi.org/10.1007/s10822-012-9584-8

    Article  CAS  PubMed  Google Scholar 

  48. Kelley BP, Brown SP, Warren GL, Muchmore SW (2015) POSIT: flexible shape-guided docking for pose prediction. J Chem Inf Model 55:1771–1780. https://doi.org/10.1021/acs.jcim.5b00142

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:1–8. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  Google Scholar 

  50. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koes DR, Baumgartner MP, Camacho CJ (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 53:1893–1904. https://doi.org/10.1021/ci300604z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiménez J, Skalic M, Martinez-Rosell G, de Fabritiis G (2018) K deep: protein–ligand absolute binding affinity prediction via 3d-convolutional neural networks. J Chem Inf Model 58:287–296. https://doi.org/10.1021/acs.jcim.7b00650

    Article  CAS  PubMed  Google Scholar 

  53. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50:572–584. https://doi.org/10.1021/ci100031x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Skalic M, Martinez-Rosell G, Jiménez J, de Fabritiis G (2019) PlayMolecule BindScope: large scale CNN-based virtual screening on the web. Bioinformatics 35:1237–1238. https://doi.org/10.1093/bioinformatics/bty758

    Article  CAS  PubMed  Google Scholar 

  56. Aggarwala A, Mittalb M, Battinenic G (2021) Generative adversarial network: an overview of theory and applications. Int J Inf Manag Data Insights 1:100004. https://doi.org/10.1016/j.jjimei.2020.100004

    Article  Google Scholar 

  57. Skalic M, Jiménez J, Sabbadin D, de Fabritiis G (2019) Shape-based generative modeling for de novo drug design. J Chem Inf Model 59:1205–1214. https://doi.org/10.1021/acs.jcim.8b00706

    Article  CAS  PubMed  Google Scholar 

  58. Skalic M, Sabbadin D, Sattarov B, Sciabola S, Fabritiis GD (2019) From target to drug: generative modeling for the multimodal structure-based ligand design. Mol Pharm 16:4282–4291. https://doi.org/10.1021/acs.molpharmaceut.9b00634

    Article  CAS  PubMed  Google Scholar 

  59. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210. https://doi.org/10.1002/wcms.1121

    Article  CAS  Google Scholar 

  61. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  63. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  64. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  65. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this paper was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award no. R15GM122013. Computational time was generously provided by Southern Methodist University’s Center for Research Computing. The authors would like to thank OpenEye Scientific Software Inc. for providing an academic license for their computer-aided drug design programs.

Author information

Authors and Affiliations

Authors

Contributions

MTI contributed to conceptualization, methodology, formal analysis and investigation, and writing and preparation of the original draft. JL contributed to writing, reviewing, and editing of the manuscript and supervision. PT contributed to conceptualization and writing, reviewing, and editing of the manuscript, funding acquisition, and supervision.

Corresponding author

Correspondence to Peng Tao.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Data availability

Experimental data: The crystal structure of DBD of Forkhead Box Protein C2 (PDB ID: 6O3T)) can be obtained free of charge from the Protein Data Bank (https://www.rcsb.org/). The sequence of Forkhead Box Protein C2 (UniprotKB Q99958) can be obtained free of charge from Uniprot (https://www.uniprot.org). Packages: The multi-fingerprint browser can be used free of charge from http://dcb-reymond23.unibe.ch:8080/MCSS/. KNIME package can be downloaded free of charge from (https://www.knime.com/). OpenMM. The package can be downloaded free of charge from (https://openmm.org). I-TASSER server can be used free of charge from (https://zhanggroup.org/I-TASSER/). BindScope server can be used free of charge from (https://playmolecule.com/BindScope/). LIGANN server can be used free of charge from (https://playmolecule.com/LiGANN/). MakeReceptor module, Omega, and FRED can be obtained from OpenEye Scientific using (https://www.eyesopen.com). PyMOL 2.4.0 (can be obtained free of charge from (https://pymol.org/2/). Molprobity can be used free of charge from (http://molprobity.biochem.duke.edu). ProSA module can be used free of charge from https://prosa.services.came.sbg.ac.at/prosa.php.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6795 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.T., Lee, J. & Tao, P. Homology modeling of Forkhead box protein C2: identification of potential inhibitors using ligand and structure-based virtual screening. Mol Divers 27, 1661–1674 (2023). https://doi.org/10.1007/s11030-022-10519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10519-0

Keywords

Navigation