Skip to main content

Advertisement

Log in

Discovery of newer pyrazole derivatives with potential anti-tubercular activity via 3D-QSAR based pharmacophore modelling, virtual screening, molecular docking and molecular dynamics simulation studies

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Tuberculosis is one of the leading causes of death of at least one million people annually. The deadliest infectious disease has caused more than 120 million deaths in humans since 1882. The cell wall structure of Mycobacterium tuberculosis is important for survival in the host environment. InhA is the foremost target for the development of novel anti-tubercular agents. Therefore, we report pharmacophore-based virtual screening (ZINC and ASINEX databases) and molecular docking study (PDB Code: 4TZK) to identify and design potent inhibitors targeting to InhA. A five-point pharmacophore model AADHR_1 (with R2 = 0.97 and Q2 = 0.77) was developed by using 47 compounds with its reported MIC values. Further, to identify and design potent hit molecules based on lead identification and modification, generated hypothesis employed for virtual screening using ZINC and ASINEX databases. Predicted pyrazole derivatives further gauged for drug likeliness and docked against enoyl acyl carrier protein reductase to categorize the essential amino acid interactions to the active site of the enzyme. Structure elucidation of these synthesized compounds was carried out using IR, MS, 1H-NMR and 13C-NMR spectroscopy. Amongst all the synthesized compounds, some of the compounds 5a, 5c, 5d and 5e were found to be potent with their MIC ranging from 2.23 to 4.61 µM. Based on preliminary anti-tubercular activity synthesized potent molecules were further assessed for MDR-TB, XDR-TB and cytotoxic study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sweileh WM, AbuTaha AS, Sawalha AF, Al-Khalil S, Al-Jabi SW, Zyoud SE (2016) Bibliometric analysis of worldwide publications on multi-, extensively, and totally drug-resistant tuberculosis (2006–2015). Multidiscip Respir Med 11(1):1–6. https://doi.org/10.1186/s40248-016-0081-0

    Article  Google Scholar 

  2. Petersen E, Maeurer M, Marais B, Migliori GB, Mwaba P, Ntoumi F, Vilaplana C, Kim K, Schito M, Zumla A (2017) World TB Day 2017: advances, challenges and opportunities in the “end-TB” era. Int J Infect Dis 56:1–5. https://doi.org/10.1016/j.ijid.2017.02.012

    Article  PubMed  Google Scholar 

  3. Sitwala ND, Vyas VK, Gedia P, Patel K, Bouzeyen R, Kidwai S, Singh R, Ghate MD (2019) 3D QSAR-based design and liquid phase combinatorial synthesis of 1, 2-disubstituted benzimidazole-5-carboxylic acid and 3-substituted-5 H-benzimidazo [1, 2-d][1, 4] benzodiazepin-6 (7 H)-one derivatives as anti-mycobacterial agents. MedChemComm 10(5):817–827. https://doi.org/10.1039/C9MD00006B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keri RS, Hiremathad A, Budagumpi S, Nagaraja BM (2015) Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem Biol Drug Des 86(1):19–65. https://doi.org/10.1111/cbdd.12462

    Article  CAS  PubMed  Google Scholar 

  5. Gobis K, Foks H, Suchan K, Augustynowicz-Kopeć E, Napiórkowska A, Bojanowski K (2015) Novel 2-(2-phenalkyl)-1H-benzo [d] imidazoles as antitubercular agents. Synthesis, biological evaluation and structure–activity relationship. Bioorg Med Chem 23(9):2112–2120. https://doi.org/10.1016/j.bmc.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Keri RS, Rajappa CK, Patil SA, Nagaraja BM (2016) Benzimidazole-core as an antimycobacterial agent. Pharmacol Rep 68(6):1254–1265. https://doi.org/10.1016/j.pharep.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  7. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18(1):81–101. https://doi.org/10.1128/CMR.18.1.81-101.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358(6387):591–593. https://doi.org/10.1038/358591a0

    Article  CAS  PubMed  Google Scholar 

  9. Zhao X, Yu H, Yu S, Wang F, Sacchettini JC, Magliozzo RS (2006) Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry 45(13):4131–4140. https://doi.org/10.1021/bi051967o

    Article  CAS  PubMed  Google Scholar 

  10. Zarghi A, Arfaei S (2011) Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Sci 10(4):655

    CAS  Google Scholar 

  11. Yanase Y, Katsuta H, Tomiya K, Enomoto M, Sakamoto O (2013) Development of a novel fungicide, penthiopyrad. Pest Sci J 13:01. https://doi.org/10.1584/jpestics.J13-01

    Article  Google Scholar 

  12. Dethlefs J (1978) Action of the anti-inflammatory agent Lonazolac on experimentally-induced acute inflammation of human skin. Z Rheumatol 37(7–8):254–259

    CAS  PubMed  Google Scholar 

  13. Baur R, Gertsch J, Sigel E (2012) The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABAA receptors. Br J Pharmacol 165(8):2479–2484. https://doi.org/10.1111/j.1476-5381.2011.01405.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong PC, Crain EJ, Watson CA, Wexler RR, Lam P, Quan ML, Knabb RM (2007) Razaxaban, a direct factor Xa inhibitor, in combination with aspirin and/or clopidogrel improves low-dose antithrombotic activity without enhancing bleeding liability in rabbits. J Thromb Haemost 24(1):43–51. https://doi.org/10.1007/s11239-007-0017-9

    Article  CAS  Google Scholar 

  15. Patel S, Modi P, Ranjan V, Chhabria M (2018) Structure-based design, synthesis and evaluation of 2, 4-diaminopyrimidine derivatives as novel caspase-1 inhibitors. Bioorg Chem 78:258–268. https://doi.org/10.1016/j.bioorg.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  16. Modi P, Patel S, Chhabria MT (2019) Identification of some novel pyrazolo [1, 5-a] pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking. J Biomol Struct Dyn 37(7):1736–1749. https://doi.org/10.1080/07391102.2018.1465852

    Article  CAS  PubMed  Google Scholar 

  17. Patel S, Modi P, Chhabria M (2018) Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies. J Mol Graph Model 81:106–115. https://doi.org/10.1016/j.jmgm.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  18. Modi P, Patel S, Chhabria M (2019) Structure-based design, synthesis and biological evaluation of a newer series of pyrazolo [1, 5-a] pyrimidine analogues as potential anti-tubercular agents. Bioorg Chem 87:240–251. https://doi.org/10.1016/j.bioorg.2019.02.044

    Article  CAS  PubMed  Google Scholar 

  19. Dong JL, Yu LS, Xie JW (2018) A simple and versatile method for the formation of acetals/ketals using trace conventional acids. ACS Omega 3(5):4974–4985. https://doi.org/10.1021/acsomega.8b00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tice CM (2001) Selecting the right compounds for screening: does Lipinski’s rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag Sci 57(1):3–16. https://doi.org/10.1002/1526-4998(200101)57:1%3c3::AID-PS269%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  21. He X, Alian A, Stroud R, Ortiz de Montellano PR (2006) Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J Med Chem 49(21):6308–6323. https://doi.org/10.1021/jm060715y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He X, Alian A, De Montellano PR (2007) Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem 15(21):6649–6658. https://doi.org/10.1016/j.bmc.2007.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah BM, Modi P, Trivedi P (2021) Pharmacophore-based virtual screening, 3D-QSAR, molecular docking approach for identification of potential dipeptidyl peptidase IV inhibitors. J Biomol Struct Dyn 39(6):2021–2043. https://doi.org/10.1080/07391102.2020.1750485

    Article  CAS  PubMed  Google Scholar 

  24. Ghayas S, Ali Masood M, Parveen R, Aquib M, Farooq MA, Banerjee P, Sambhare S, Bavi R (2020) 3D QSAR pharmacophore-based virtual screening for the identification of potential inhibitors of tyrosinase. J Biomol Struct Dyn 38(10):2916–2927. https://doi.org/10.1080/07391102.2019.1647287

    Article  CAS  PubMed  Google Scholar 

  25. Mohan A, Kirubakaran R, Parray JA, Sivakumar R, Murugesh E, Govarthanan M (2020) Ligand-based pharmacophore filtering, atom based 3D-QSAR, virtual screening and ADME studies for the discovery of potential ck2 inhibitors. J Mol Struct 1205:127670. https://doi.org/10.1016/j.molstruc.2019.127670

    Article  CAS  Google Scholar 

  26. Khan MF, Verma G, Akhtar W, Shaquiquzzaman M, Akhter M, Rizvi MA, Alam MM (2019) Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1, 3, 4-thiadiazole amides and sulfonamides as antitubulin agents. Arab J Chem 12(8):5000–5018. https://doi.org/10.1016/j.arabjc.2016.11.004

    Article  CAS  Google Scholar 

  27. Varpe BD, Jadhav SB, Chatale BC, Mali AS, Jadhav SY, Kulkarni AA (2020) 3D-QSAR and pharmacophore modeling of 3, 5-disubstituted indole derivatives as Pim kinase inhibitors. Struct Chem 31(5):1675–1690. https://doi.org/10.1007/s11224-020-01503-1

    Article  CAS  Google Scholar 

  28. Sirous H, Campiani G, Brogi S, Calderone V, Chemi G (2020) Computer-driven development of an in-silico tool for finding selective histone deacetylase 1 inhibitors. Molecules 25(8):1952. https://doi.org/10.3390/molecules25081952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu YY, Feng XY, Jia WQ, Jing Z, Xu WR, Cheng XC (2020) Virtual identification of novel PPARα/γ dual agonists by 3D-QSAR, molecule docking and molecular dynamics studies. J Biomol Struct Dyn 38(9):2672–2685. https://doi.org/10.1080/07391102.2019.1656110

    Article  CAS  PubMed  Google Scholar 

  30. Shah B, Modi P, Sagar SR (2020) In silico studies on therapeutic agents for COVID-19: drug repurposing approach. Life Sci 252:117652. https://doi.org/10.1016/j.lfs.2020.117652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Banerjee K, Gupta U, Gupta S, Wadhwa G, Gabrani R, Sharma SK, Jain CK (2011) Molecular docking of glucosamine-6-phosphate synthase in Rhizopus oryzae. Bioinformation 7(6):285. https://doi.org/10.6026/007/97320630007285

    Article  PubMed  PubMed Central  Google Scholar 

  32. An Y, Meng C, Chen Q, Gao J (2020) Discovery of small molecule sirt1 activator using high-throughput virtual screening, molecular dynamics simulation, molecular mechanics generalized born/surface area (MM/GBSA) calculation, and biological evaluation. Med Chem Res 29(2):255–261. https://doi.org/10.1007/s00044-019-02479-2

    Article  CAS  Google Scholar 

  33. Ha Y, Jang M, Lee S, Lee JY, Lee WC, Bae S, Kang J, Han M, Kim Y (2020) Identification of inhibitor binding hotspots in Acinetobacter baumannii β-ketoacyl acyl carrier protein synthase III using molecular dynamics simulation. J Mol Graph Model 100:107669. https://doi.org/10.1016/j.jmgm.2020.107669

    Article  CAS  PubMed  Google Scholar 

  34. Yokoyama T, Wijaya P, Kosaka Y, Mizuguchi M (2020) Structural and thermodynamic analyses of interactions between death-associated protein kinase 1 and anthraquinones. Acta Crystallogr Sect D 76(5):438–446. https://doi.org/10.1107/S2059798320003940

    Article  CAS  Google Scholar 

  35. Patel HM, Ahmad I, Pawara R, Shaikh M, Surana S (2021) In silico search of triple mutant T790M/C797S allosteric inhibitors to conquer acquired resistance problem in non-small cell lung cancer (NSCLC): a combined approach of structure-based virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 39(4):1491–1505. https://doi.org/10.1080/07391102.2020.1734092

    Article  CAS  PubMed  Google Scholar 

  36. Ikram S, Ahmad J, Durdagi S (2020) Screening of FDA approved drugs for finding potential inhibitors against Granzyme B as a potent drug-repurposing target. J Mol Graph Model 95:107462. https://doi.org/10.1016/j.jmgm.2019.107462

    Article  CAS  PubMed  Google Scholar 

  37. Fadda AA, Bayoumy NM, Soliman NN, Eldiasty DM (2019) Cyanoacetamide intermediate in heterocyclic synthesis: synthesis and biological evaluation of hitherto new dioxoisoindoline heterocyclic derivatives. J Het Chem 56(2):597–607. https://doi.org/10.1002/jhet.3436

    Article  CAS  Google Scholar 

  38. Jöst C, Nitsche C, Scholz T, Roux L, Klein CD (2014) Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments. J Med Chem 57(18):7590–7599. https://doi.org/10.1021/jm5006918

    Article  CAS  PubMed  Google Scholar 

  39. Yuan WY, Chen X, Liu NN, Wen YN, Yang B, Andrei G, Snoeck R, Xiang YH, Wu YW, Jiang Z, Schols D (2019) Synthesis, anti-varicella-zoster virus and anti-cytomegalovirus activity of 4, 5-disubstituted 1, 2, 3-(1H)-triazoles. Med Chem 15(7):801–812. https://doi.org/10.2174/1573406414666181109095239

    Article  CAS  PubMed  Google Scholar 

  40. Fu R, Yang Y, Ma Y, Yang F, Li J, Chai W, Wang Q, Yuan R (2015) Microwave-promoted direct amidation of unactivated esters catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions. Tetrahedron lett 56(30):4527–4531. https://doi.org/10.1016/j.tetlet.2015.05.118

    Article  CAS  Google Scholar 

  41. Sutherland KW, Feigelson GB, Boschelli DH, Blum DM, Strong HL (2005) Process for the preparation of 4-amino-3-quinolinecarbonitriles and 7-aminothieno [3, 2-b] pyridine-6-carbonitriles. US Pat Appl Publ 2005:2005043537

    Google Scholar 

  42. Hu D, Miyagi N, Arai Y, Oguri H, Miura T, Nishinaka T, Terada T, Gouda H, El-Kabbani O, Xia S, Toyooka N (2015) Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1. Org Biomol Chem 13(27):7487–7499. https://doi.org/10.1039/C5OB00847F

    Article  CAS  PubMed  Google Scholar 

  43. Karelia C, Parmar K, Teli D, Chhabria M (2020) Design, synthesis and biological evaluation of novel DPP-IV inhibitors. J Indian Chem Soc 97(8):1227–1235

    CAS  Google Scholar 

  44. Azzam RA, Elgemeie GH, Osman RR (2020) Synthesis of novel pyrido [2, 1-b] benzothiazole and N-substituted 2-pyridylbenzothiazole derivatives showing remarkable fluorescence and biological activities. J Mol Struct 1201:127194. https://doi.org/10.1016/j.molstruc.2019.127194

    Article  CAS  Google Scholar 

  45. Kumar S, Thakur RR, Margal SR, Thomas A (2013) A simple and general approach for the synthesis of highly functionalized 6-oxo-1, 6-dihydropyridines. Tetrahedron 69(25):5112–5118. https://doi.org/10.1016/j.tet.2013.04.082

    Article  CAS  Google Scholar 

  46. Lobanova NA, Stankevich VK, Kukharev BF (2012) Synthesis of acetals containing a primary amino group. Russian J Org Chem 48(10):1289–1296. https://doi.org/10.1134/S1070428012100053

    Article  CAS  Google Scholar 

  47. Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA (2018) Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules 23(1):134

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jethva KD, Bhatt DR, Zaveri MN (2020) Antimycobacterial screening of selected medicinal plants against Mycobacterium tuberculosis H37Rv using agar dilution method and the microplate resazurin assay. Int J Mycobacteriol 9(2):150. https://doi.org/10.4103/ijmy.ijmy_60_20

    Article  CAS  PubMed  Google Scholar 

  49. Amuda BO, Oduyebo OO, Abutu P (2020) Detection of multi-drug resistant tuberculosis using the genotype MTBDR DNA strip assay and Lowenstein Jensen proportion method. Asian J Infect Dis. https://doi.org/10.9734/ajrid/2020/v4i230142

    Article  Google Scholar 

  50. Gao F, Chen Z, Ma L, Fan Y, Chen L, Lu G (2019) Synthesis and biological evaluation of moxifloxacin-acetyl-1, 2, 3–1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. Eur J Med Chem 180:648–655. https://doi.org/10.1016/j.ejmech.2019.07.057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Maratha Mandal’s Dental College, Belgaum and NCL Pune for providing biological screening of these title compounds. The authors are also thankful to Schrodinger Inc. for providing help for the molecular dynamics simulation study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Chhabria.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10875 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, P., Patel, S. & Chhabria, M. Discovery of newer pyrazole derivatives with potential anti-tubercular activity via 3D-QSAR based pharmacophore modelling, virtual screening, molecular docking and molecular dynamics simulation studies. Mol Divers 27, 1547–1566 (2023). https://doi.org/10.1007/s11030-022-10511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10511-8

Keywords

Navigation