Skip to main content
Log in

Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. Rhubarb, a traditional Chinese medicine, has been widely used in the treatment of inflammatory and autoimmune diseases. This study aimed to investigate the possible mechanism of the rhubarb herb in the treatment of NSCLC by means of network pharmacology and molecular docking and to provide a theoretical basis for experiments and clinical application of traditional Chinese medicine for treating lung cancer. The main active chemical components and targets of rhubarb were screened through Swiss Target Prediction, TargetNet, and Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The protein–protein interaction (PPI) network was built via an in-depth exploration of the relationships between the proteins. The enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to predict the potential roles in the pathogenesis of NSCLC via the R package cluster Profiler. Potential targets and active ingredients associated with anti-tumor effects of rhubarb were screened by reverse molecular docking. By searching databases and literature, a total of 295 targets were found for the 21 active ingredients in rhubarb. There were 68 common target genes associated with NSCLC, of which 9 are derived from FDA-approved drugs. GO Gene Set Enrichment Analysis (GSEA) explored up to 1103 biological processes, 62 molecular functions, and 18 cellular components. KEGG GSEA explored 65 basic pathways, and 71 disease pathways. Four key targets (JUN, EGFR, BCL2, and JAK2) were screened through the protein–protein interaction network, target-pathway network, and FDA drug-target network. Molecular docking results showed that these key targets had relatively strong binding activities with rhubarb's active ingredients. The present study explored the potential pharmacological mechanisms of rhubarb on NSCLC, promoting the clinical application of rhubarb in treating NSCLC, and providing references for advanced research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Hu J, Chen Y, Zhu X, Ma Q, Zhang J, Jiang G, Zhang P (2021) Surgical choice of non-small cell lung cancer with unexpected pleural dissemination intraoperatively. BMC Cancer 21:445. https://doi.org/10.1186/s12885-021-08180-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Zhang Y, Wang Y, Shu X, Lu C, Shao S, Liu X, Yang C, Luo J, Du Q (2021) Using network pharmacology and molecular docking to explore the mechanism of Shan Ci Gu (Cremastra appendiculata) against non-small cell lung cancer. Front Chem 9:682862. https://doi.org/10.3389/fchem.2021.682862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li X, Lin B, Lin Z, Ma Y, Wang Q, Zheng Y, Cui L, Luo H, Luo L (2021) Exploration in the mechanism of fucosterol for the treatment of non-small cell lung cancer based on network pharmacology and molecular docking. Sci Rep 11:4901. https://doi.org/10.1038/s41598-021-84380-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao C, Zhuang J, Li H, Liu C, Zhou C, Liu L, Feng F, Sun C (2021) Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database. Aging (Albany NY) 13:3957–3968. https://doi.org/10.18632/aging.202364

    Article  CAS  PubMed  Google Scholar 

  6. Tian D, Li Y, Li X, Tian Z (2018) Aloperine inhibits proliferation, migration and invasion and induces apoptosis by blocking the Ras signaling pathway in human breast cancer cells. Mol Med Rep 18:3699–3710. https://doi.org/10.3892/mmr.2018.9419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao A, He H, Jing M, Yu B, Zhou X (2017) Shenfu injection adjunct with platinum-based chemotherapy for the treatment of advanced non-small-cell lung cancer: a meta-analysis and systematic review. Evid Based Complement Altern Med 2017:1068751. https://doi.org/10.1155/2017/1068751

    Article  Google Scholar 

  8. Jargalsaikhan G, Wu JY, Chen YC, Yang LL, Wu MS (2021) Comparison of the phytochemical properties, antioxidant activity and cytotoxic effect on HepG2 cells in Mongolian and Taiwanese Rhubarb species. Molecules. https://doi.org/10.3390/molecules26051217

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mohtashami L, Amiri MS, Ayati Z, Ramezani M, Jamialahmadi T, Emami SA, Sahebkar A (2021) Ethnobotanical uses, phytochemistry and pharmacology of different Rheum species (polygonaceae): a review. Adv Exp Med Biol 1308:309–352. https://doi.org/10.1007/978-3-030-64872-5_22

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Lin Y, Zhang S, Zhou L, Yan G, Wang Y, Zhang M, Wang M, Lin H, Tong Q, Duan Y, Du G (2019) Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. J Transl Med 17:90. https://doi.org/10.1186/s12967-019-1838-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen S, Zhang Z, Zhang J (2019) Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo. Drug Des Devel Ther 13:1145–1153. https://doi.org/10.2147/dddt.S196319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu HM, Liu YF, Cheng YF, Hu LK, Hou M (2008) Effects of rhubarb extract on radiation induced lung toxicity via decreasing transforming growth factor-beta-1 and interleukin-6 in lung cancer patients treated with radiotherapy. Lung Cancer 59:219–226. https://doi.org/10.1016/j.lungcan.2007.08.007

    Article  PubMed  Google Scholar 

  13. Shia CS, Suresh G, Hou YC, Lin YC, Chao PD, Juang SH (2011) Suppression on metastasis by rhubarb through modulation on MMP-2 and uPA in human A549 lung adenocarcinoma: an ex vivo approach. J Ethnopharmacol 133:426–433. https://doi.org/10.1016/j.jep.2010.10.020

    Article  PubMed  Google Scholar 

  14. Li WY, Chan SW, Guo DJ, Chung MK, Leung TY, Yu PH (2009) Water extract of Rheum officinale Baill. induces apoptosis in human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines. J Ethnopharmacol 124:251–256. https://doi.org/10.1016/j.jep.2009.04.030

    Article  PubMed  Google Scholar 

  15. Li Z, Xu D, Jing J, Li F (2021) Network pharmacology-based study to explore the mechanism of the Yiqi Gubiao pill in lung cancer treatment. Oncol Lett 21:321. https://doi.org/10.3892/ol.2021.12583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11:110–120. https://doi.org/10.1016/s1875-5364(13)60037-0

    Article  PubMed  Google Scholar 

  17. Yang M, Chen JL, Xu LW, Ji G (2013) Navigating traditional chinese medicine network pharmacology and computational tools. Evid Based Complement Alternat Med 2013:731969. https://doi.org/10.1155/2013/731969

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu S, Wang R, Lou Y, Liu J (2020) Uncovering the mechanism of the effects of Pien-Tze-Huang on liver cancer using network pharmacology and molecular docking. Evid Based Complement Alternat Med 2020:4863015. https://doi.org/10.1155/2020/4863015

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6:13. https://doi.org/10.1186/1758-2946-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei T, Zheng C, Huang C, Chen X, Guo Z, Fu Y, Liu J, Wang Y (2016) Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J Ethnopharmacol 190:272–287. https://doi.org/10.1016/j.jep.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  21. Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47:W357-w364. https://doi.org/10.1093/nar/gkz382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform 54:1.30.31–31.30.33. https://doi.org/10.1002/cpbi.5

  23. Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, Zhang R, Zhu J, Ren Y, Tan Y, Qin C, Li Y, Li X, Chen Y, Zhu F (2020) Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 48:D1031-d1041. https://doi.org/10.1093/nar/gkz981

    Article  CAS  PubMed  Google Scholar 

  24. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417. https://doi.org/10.1038/clpt.2012.96

    Article  CAS  PubMed  Google Scholar 

  25. Yan J, Wu X, Chen J, Chen Y, Zhang H (2020) Harnessing the strategy of metagenomics for exploring the intestinal microecology of sable (Martes zibellina), the national first-level protected animal. AMB Express 10:169. https://doi.org/10.1186/s13568-020-01103-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao J, Tian S, Lu D, Yang J, Zeng H, Zhang F, Tu D, Ge G, Zheng Y, Shi T, Xu X, Zhao S, Yang Y, Zhang W (2021) Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine 85:153315. https://doi.org/10.1016/j.phymed.2020.153315

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C (2018) Deciphering key pharmacological pathways of qingdai acting on chronic myeloid leukemia using a network pharmacology-based strategy. Med Sci Monit 24:5668–5688. https://doi.org/10.12659/msm.908756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gan D, Xu X, Chen D, Feng P, Xu Z (2019) Network pharmacology-based pharmacological mechanism of the Chinese medicine Rhizoma drynariae against osteoporosis. Med Sci Monit 25:5700–5716. https://doi.org/10.12659/msm.915170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang L, Shi Z, Yang Y (2021) Network pharmacology-based approach to investigate the molecular targets of rhubarb for treating cancer. Evid Based Complement Alternat Med 2021:9945633. https://doi.org/10.1155/2021/9945633

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15:7–24. https://doi.org/10.1038/nrc3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan AC (2020) Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer 11:511–518. https://doi.org/10.1111/1759-7714.13328

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang T, Li Y, Zhu R, Song P, Wei Y, Liang T, Xu G (2019) Transcription factor p53 suppresses tumor growth by prompting pyroptosis in non-small-cell lung cancer. Oxid Med Cell Longev 2019:8746895. https://doi.org/10.1155/2019/8746895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiao XD, Qin BD, You P, Cai J, Zang YS (2018) The prognostic value of TP53 and its correlation with EGFR mutation in advanced non-small cell lung cancer, an analysis based on cBioPortal data base. Lung Cancer 123:70–75. https://doi.org/10.1016/j.lungcan.2018.07.003

    Article  PubMed  Google Scholar 

  34. Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107. https://doi.org/10.1101/cshperspect.a001107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, Suciu N, Voinea SC (2020) MicroRNA involvement in signaling pathways during viral infection. Front Cell Dev Biol 8:143. https://doi.org/10.3389/fcell.2020.00143

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pradhan R, Singhvi G, Dubey SK, Gupta G, Dua K (2019) MAPK pathway: a potential target for the treatment of non-small-cell lung carcinoma. Future Med Chem 11:793–795. https://doi.org/10.4155/fmc-2018-0468

    Article  CAS  PubMed  Google Scholar 

  37. Bremnes RM, Camps C, Sirera R (2006) Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer 51:143–158. https://doi.org/10.1016/j.lungcan.2005.09.005

    Article  PubMed  Google Scholar 

  38. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284. https://doi.org/10.1016/j.bbamcr.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  39. Liang Y, Zhang T, Jing S, Zuo P, Li T, Wang Y, Xing S, Zhang J, Wei Z (2021) 20(S)-ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-mediated Ras/Raf/MEK/ERK pathway. Am J Chin Med 49:753–765. https://doi.org/10.1142/s0192415x2150035x

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Shi C, He Z, Zhu F, Wang M, He R, Zhao C, Shi X, Zhou M, Pan S, Gao Y, Li X, Qin R (2021) Inhibition of PI3K/AKT signaling via ROS regulation is involved in Rhein-induced apoptosis and enhancement of oxaliplatin sensitivity in pancreatic cancer cells. Int J Biol Sci 17:589–602. https://doi.org/10.7150/ijbs.49514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Looyenga BD, Hutchings D, Cherni I, Kingsley C, Weiss GJ, Mackeigan JP (2012) STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS ONE 7:e30820. https://doi.org/10.1371/journal.pone.0030820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muto A, Hori M, Sasaki Y, Saitoh A, Yasuda I, Maekawa T, Uchida T, Asakura K, Nakazato T, Kaneda T, Kizaki M, Ikeda Y, Yoshida T (2007) Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther 6:987–994. https://doi.org/10.1158/1535-7163.Mct-06-0605

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Yao S, Diao Y, Geng Y, Bi Y, Liu G (2020) miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer 11:1396–1405. https://doi.org/10.1111/1759-7714.13382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang B, Yi J, Zhang CL, Zhang QH, Xu JF, Shen HQ, Ge DW (2017) MiR-146a inhibits proliferation and induces apoptosis in murine osteoblastic MC3T3-E1 by regulating Bcl2. Eur Rev Med Pharmacol Sci 21:3754–3762

    CAS  PubMed  Google Scholar 

  45. Jiang X, Liu Y, Zhang G, Lin S, Wu J, Yan X, Ma Y, Ma M (2020) Aloe-emodin induces breast tumor cell apoptosis through upregulation of miR-15a/miR-16-1 that suppresses BCL2. Evid Based Complement Alternat Med 2020:5108298. https://doi.org/10.1155/2020/5108298

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bu T, Wang C, Meng Q, Huo X, Sun H, Sun P, Zheng S, Ma X, Liu Z, Liu K (2018) Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. Eur J Pharmacol 834:266–273. https://doi.org/10.1016/j.ejphar.2018.07.031

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Health and Family Planning Commission of Hunan Province Research Project (Grant No. C2019119; to Yu. Lu) and the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ50097; to Yu. Lu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lu.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1404 KB)

Supplementary file2 (TIF 440 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, YR., Lu, Y. Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology. Mol Divers 27, 1437–1457 (2023). https://doi.org/10.1007/s11030-022-10501-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10501-w

Keywords

Navigation