Skip to main content
Log in

Design and synthesis of novel quinazolinyl-bisspirooxindoles as potent anti-tubercular agents: an ultrasound-promoted methodology

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The essential need for the potent anti-tubercular (anti-TB) agents with high selectivity and safety profile prompted us to synthesize a new series of quinazolinyl-bisspirooxindoles. The title compounds were synthesized by one-pot multicomponent [3 + 2] cycloaddition reaction under ultrasonication. Further, in vitro anti-TB activity was evaluated against Mycobacterium tuberculosis H37Rv. Among the screened compounds, two compounds (4q and 4x) showed potent activity with MIC value 1.56 µg/mL and four compounds exhibited significant activity (MIC = 3.125 µg/mL), and also cytotoxicity studies against RAW 264.7 cell lines reveal that most active compounds were less toxic to humans. In addition, in order to demonstrate the inhibitory properties, molecular docking studies were carried out and the results showed that the target compounds have good binding energy and better binding affinity within the active pocket, thus these compounds may consider to be as potent inhibitors toward selective targets.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fogel N (2015) Tuberculosis: a disease without boundaries. Tuberculosis 95:527–531. https://doi.org/10.1016/j.tube.2015.05.017

    Article  PubMed  Google Scholar 

  2. WHO (2020) Global tuberculosis report. WHO. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/. Accesed 14 Oct 2020

  3. Bhowruth V, Dover LG, Besra GS (2007) 4 Tuberculosis chemotherapy: recent developments and future perspectives. Prog Med Chem 45:169–203. https://doi.org/10.1016/S0079-6468(06)45504-1

    Article  CAS  PubMed  Google Scholar 

  4. Du Preez I, Loots DT (2018) Novel insights into the pharmacometabonomics of first-line tuberculosis drugs relating to metabolism, mechanism of action and drug-resistance. Drug Metab Rev 50:466–481. https://doi.org/10.1080/03602532.2018.1559184

    Article  CAS  PubMed  Google Scholar 

  5. De Cock KM, Chaisson RE (1999) Will DOTS do it? A reappraisal of tuberculosis control in countries with high rates of HIV infection. Int J Tuberc Lung Dis 3:457–465

    PubMed  Google Scholar 

  6. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–1843. https://doi.org/10.1016/S0140-6736(10)60410-2

    Article  PubMed  Google Scholar 

  7. Muthukrishnan L (2021) Multidrug resistant tuberculosis—diagnostic challenges and its conquering by nanotechnology approach—an overview. Chem Biol Interact 337:109397. https://doi.org/10.1016/j.cbi.2021.109397

    Article  CAS  PubMed  Google Scholar 

  8. Zhou LM, Qu RY, Yang GF (2020) An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin Drug Discov 15:603–625. https://doi.org/10.1080/17460441.2020.1733526

    Article  CAS  PubMed  Google Scholar 

  9. Yu B, Yu Z, Qi PP, Yu DQ, Li HM (2015) Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: success and challenges. Eur J Med Chem 95:35–40. https://doi.org/10.1016/j.ejmech.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  10. Bora D, Kaushal A, Shankaraiah N (2021) Anticancer potential of spiro compounds in medicinal chemistry: a pentennial expedition. Eur J Med Chem 215:113263. https://doi.org/10.1016/j.ejmech.2021.113263

    Article  CAS  PubMed  Google Scholar 

  11. Haddad S, Boudriga S, Akhaja TN, Raval JP, Porzio F, Soldera A, Askri M, Knorr M, Rousselin Y, Kubickie MM, Rajani D (2015) A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: in vitro antibacterial, antifungal, antimalarial and antitubercular studies. N J Chem 39:520–528. https://doi.org/10.1039/c4nj01008f

    Article  CAS  Google Scholar 

  12. Huang Y, Min W, Wu QW, Sun J, Shi DH, Yan CG (2018) Facile one-pot synthesis of spirooxindole-pyrrolidine derivatives and their antimicrobial and acetylcholinesterase inhibitory activities. N J Chem 42:16211–16216. https://doi.org/10.1039/C8NJ03813A

    Article  CAS  Google Scholar 

  13. Al-Rashood ST, Hamed AR, Hassan GS, Alkahtani HM, Almehizia AA, Alharbi A, Al-Sanea MM, Eldehna WM (2020) Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity. J Enzyme Inhib Med Chem 35:831–839. https://doi.org/10.1080/14756366.2020.1743281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishtala VB, Mahesh C, Bhargavi G, Pasala VK, Basavoju S (2020) Synthesis of spirooxindolocarbamates based on Betti reaction: antibacterial, antifungal and antioxidant activities. Mol Divers 24:1139–1147. https://doi.org/10.1007/s11030-019-10017-w

    Article  CAS  PubMed  Google Scholar 

  15. Ye N, Chen H, Wold EA, Shi PY, Zhou J (2016) Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect Dis 2:382–392. https://doi.org/10.1021/acsinfecdis.6b00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen L, Hao Y, Song H, Liu Y, Li Y, Zhang J, Wang Q (2020) Design, synthesis, characterization, and biological activities of novel spirooxindole analogues containing hydantoin, thiohydantoin, urea, and thiourea moieties. J Agric Food Chem 68:10618–10625. https://doi.org/10.1021/acs.jafc.0c04488

    Article  CAS  PubMed  Google Scholar 

  17. de Silva NH, Pyreddy S, Blanch EW, Hügel HM, Maniam S (2021) Microwave-assisted rapid synthesis of spirooxindole-pyrrolizidine analogues and their activity as anti-amyloidogenic agents. Bioorg Chem 114:105128. https://doi.org/10.1016/j.bioorg.2021.105128

    Article  CAS  PubMed  Google Scholar 

  18. Dai W, Jiang XL, Wu Q, Shi F, Tu SJ (2015) Diastereo- and enantioselective construction of 3, 3′-pyrrolidinyldispirooxindole framework via catalytic asymmetric 1, 3-dipolar cycloadditions. J Org Chem 80:5737–5744. https://doi.org/10.1021/acs.joc.5b00708

    Article  CAS  PubMed  Google Scholar 

  19. Rajesh SM, Perumal S, Menéndez JC, Yogeeswari P, Sriram D (2011) Antimycobacterial activity of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole hybrids obtained by a three-component regio- and stereoselective 1, 3-dipolar cycloaddition. MedChemComm 2:626–630. https://doi.org/10.1039/c0md00239a

    Article  CAS  Google Scholar 

  20. Mhiri C, Boudriga S, Askri M, Knorr M, Sriram D, Yogeeswari P, Nana F, Golz C, Strohmann C (2015) Design of novel dispirooxindolopyrrolidine and dispirooxindolopyrrolothiazole derivatives as potential antitubercular agents. Bioorg Med Chem Lett 25:4308–4313. https://doi.org/10.1016/j.bmcl.2015.07.069

    Article  CAS  PubMed  Google Scholar 

  21. Arumugam N, Almansour AI, Kumar RS, Krishna VS, Sriram D, Degec N (2021) Stereoselective synthesis and discovery of novel spirooxindolopyrrolidine engrafted indandione heterocyclic hybrids as antimycobacterial agents. Bioorg Chem 110:104798. https://doi.org/10.1016/j.bioorg.2021.104798

    Article  CAS  PubMed  Google Scholar 

  22. Zheng L, Wang H, Fan A, Li SM (2020) Oxepinamide F biosynthesis involves enzymatic d-aminoacyl epimerization, 3H-oxepin formation, and hydroxylation induced double bond migration. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-18713-0

    Article  CAS  Google Scholar 

  23. Wang CJ, Guo X, Zhai RQ, Sun C, Xiao G, Chen J, Wei MY, Shao CL, Gu Y (2021) Discovery of penipanoid C-inspired 2-(3, 4, 5-trimethoxybenzoyl)quinazolin-4(3H)-one derivatives as potential anticancer agents by inhibiting cell proliferation and inducing apoptosis in hepatocellular carcinoma cells. Eur J Med Chem 224:113671. https://doi.org/10.1016/j.ejmech.2021.113671

    Article  CAS  PubMed  Google Scholar 

  24. Qiu J, Chen W, Zhang Y, Zhou Q, Chen J, Li Y, Gao J, Gu X, Tang D (2019) Assessment of quinazolinone derivatives as novel non-nucleoside hepatitis B virus inhibitors. Eur J Med Chem 176:41–49. https://doi.org/10.1016/j.ejmech.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  25. Monika SA, Suthar SK, Aggarwal V, Lee HB, Sharma M (2014) Synthesis of lantadene analogs with marked in vitro inhibition of lung adenocarcinoma and TNF-α induced nuclear factor-kappa B (NF-κB) activation. Bioorg Med Chem Lett 24:3814–3818. https://doi.org/10.1016/j.bmcl.2014.06.068

    Article  CAS  PubMed  Google Scholar 

  26. Plescia F, Maggio B, Daidone G, Raffa D (2021) 4-(3H)-quinazolinones N-3 substituted with a five membered heterocycle: a promising scaffold towards bioactive molecules. Eur J Med Chem 213:113070. https://doi.org/10.1016/j.ejmech.2020.113070

    Article  CAS  PubMed  Google Scholar 

  27. Shao LH, Fan SL, Meng YF, Gan YY, Shao WB, Wang ZC, Chen DP, Ouyang GP (2021) Design, synthesis, biological activities and 3D-QSAR studies of quinazolinone derivatives containing hydrazone structural units. N J Chem 45:4626–4631. https://doi.org/10.1039/d0nj05450j

    Article  CAS  Google Scholar 

  28. Kamal A, Reddy BVS, Sridevi B, Ravikumar A, Venkateswarlu A, Sravanthi G, Sridevi JP, Yogeeswari P, Sriram D (2015) Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorg Med Chem Lett 25:3867–3872. https://doi.org/10.1016/j.bmcl.2015.07.057

    Article  CAS  PubMed  Google Scholar 

  29. Lu W, Baig IA, Sun HJ, Cui CJ, Guo R, Jung IP, Wang D, Dong M, Yoon MY, Wang JG (2015) Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase. Eur J Med Chem 94:298–305. https://doi.org/10.1016/j.ejmech.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  30. Machado IV, dos Santos JRN, Januario MAP, Corrêa AG (2021) Greener organic synthetic methods: sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason Sonochem 78:105704. https://doi.org/10.1016/j.ultsonch.2021.105704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Palanivel L, Gnanasambandam V (2020) Diversity oriented multi-component reaction (DOS-MCR) approach to access natural product analogues: regio- and chemo-selective synthesis of polyheterocyclic scaffolds: via one-pot cascade reactions. Org Biomol Chem 18:3082–3092. https://doi.org/10.1039/d0ob00368a

    Article  CAS  PubMed  Google Scholar 

  32. Allaka BS, Basavoju S, Gamidi RK (2021) A photoinduced multicomponent regioselective synthesis of 1, 4, 5-trisubstituted-1, 2, 3-triazoles: transition metal-, azide- and oxidant-free protocol. Adv Synth Catal 363:3560–3565. https://doi.org/10.1002/adsc.202100321

    Article  CAS  Google Scholar 

  33. Allaka BS, Basavoju S, Gamidi RK (2022) Transition metal- and oxidant-free regioselective synthesis of 3, 4, 5-trisubstituted pyrazoles by means of [3 + 2] cycloaddition reactions. ChemistrySelect 7:3–7. https://doi.org/10.1002/slct.202200605

    Article  CAS  Google Scholar 

  34. Ramesh P, Srinivasa Rao K, Trivedi R, Kumar BS, Prakasham RS, Sridhar B (2016) Highly efficient regio and diastereoselective synthesis of functionalized bis-spirooxindoles and their antibacterial properties. RSC Adv 6:26546–26552. https://doi.org/10.1039/C6RA00613B

    Article  CAS  Google Scholar 

  35. Bhandari S, Sana S, Sridhar B, Shankaraiah N (2019) Microwave-assisted one-pot [3 + 2] cycloaddition of azomethine ylides and 3-alkenyl oxindoles: a facile approach to pyrrolidine-fused bis-spirooxindoles. ChemistrySelect 4:1727–1730. https://doi.org/10.1002/slct.201802847

    Article  CAS  Google Scholar 

  36. Allaka BS, Basavoju S, Gamidi RK (2020) A green catalyst Fe(OTs)3/SiO2 for the synthesis of 4-pyrrolo-12-oxoquinazolines. ChemistrySelect 5:14721–14728. https://doi.org/10.1002/slct.202004012

    Article  CAS  Google Scholar 

  37. Pogaku V, Krishna VS, Balachandran C, Rangan K, Sriram D, Aoki S, Basavoju S (2019) The design and green synthesis of novel benzotriazoloquinolinyl spirooxindolopyrrolizidines: antimycobacterial and antiproliferative studies. N J Chem 43:17511–17520. https://doi.org/10.1039/c9nj03802g

    Article  CAS  Google Scholar 

  38. Pogaku V, Krishna VS, Sriram D, Rangan K, Basavoju S (2019) Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1, 2, 4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines. Bioorg Med Chem Lett 29:1682–1687. https://doi.org/10.1016/j.bmcl.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  39. Krishna VS, Zheng S, Rekha EM, Guddat LW, Sriram D (2019) Discovery and evaluation of novel mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. J Comput Aided Mol Des 33:357–366. https://doi.org/10.1007/s10822-019-00184-1

    Article  CAS  PubMed  Google Scholar 

  40. Van MJ, Kaspers GJ, Closs J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245. https://doi.org/10.1007/978-1-61779-080-5_20

    Article  CAS  Google Scholar 

  41. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors B. S. A. and S. B. thank the Director, NIT Warangal for providing the facilities. B. S. A. thanks the UGC New Delhi, India for providing Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Basavoju.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (CIF 2756 kb)

Supplementary file2 (DOCX 108943 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaka, B.S., Basavoju, S., Madhu Rekha, E. et al. Design and synthesis of novel quinazolinyl-bisspirooxindoles as potent anti-tubercular agents: an ultrasound-promoted methodology. Mol Divers 27, 1427–1436 (2023). https://doi.org/10.1007/s11030-022-10500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10500-x

Keywords

Navigation