Skip to main content
Log in

Ligand-based in silico identification and biological evaluation of potential inhibitors of nicotinamide N-methyltransferase

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Nicotinamide N-methyltransferase (NNMT) is a protein coding gene, which methylates the nicotinamide (NA) (vitamin B3) to produce 1-methylnicotinamide (MNA). Several studies have suggested that the overexpression of NNMT is associated with different metabolic disorders like obesity and type-2 diabetes thereby making it an important therapeutic target for development of anti-diabetic agents. Here we describe a workflow for identification of new inhibitors of NNMT from a library of small molecules. In this study, we have hypothesized a four-point pharmacophore model based on the pharmacophoric features of reported NNMT inhibitors in the literature. The statistically significant pharmacophore hypothesis was used to explore the Maybridge compound library that resulted in mapping of 1330 hit compounds on the proposed hypothesis. Subsequently, a total of eight high scoring compounds, showing good protein–ligand interactions in the molecular docking study, were selected for biological evaluation of NNMT activity. Eventually, four compounds were found to show significant inhibitory activity for NNMT and can be further explored to design new derivatives around the identified scaffolds with improved activities as NNMT inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aksoy S, Szumlanski CL, Weinshilboum RM (1994) Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J Biol Chem 269:14835–14840. https://doi.org/10.1016/s0021-9258(17)36700-5

    Article  CAS  PubMed  Google Scholar 

  2. Gao Y, Van Haren MJ, Moret EE et al (2019) Bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT) with enhanced activity. J Med Chem 62:6597–6614. https://doi.org/10.1021/acs.jmedchem.9b00413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Babault N, Allali-Hassani A, Li F et al (2018) Discovery of bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT). J Med Chem 61:1541–1551. https://doi.org/10.1021/acs.jmedchem.7b01422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Houtkooper RH, Cantó C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223. https://doi.org/10.1210/er.2009-0026

    Article  CAS  PubMed  Google Scholar 

  5. Ramsden DB, Waring RH, Barlow DJ, Parsons RB (2017) Nicotinamide N-methyltransferase in health and cancer. Int J Tryptophan Res. https://doi.org/10.1177/1178646917691739

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim J, Hong SJ, Lim EK et al (2009) Expression of nicotinamide N-methyltransferase in hepatocellular carcinoma is associated with poor prognosis. J Exp Clin Cancer Res 28:1–9. https://doi.org/10.1186/1756-9966-28-20

    Article  CAS  Google Scholar 

  7. Riederer M, Erwa W, Zimmermann R et al (2009) Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis 204:412–417. https://doi.org/10.1016/j.atherosclerosis.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  8. Seifert R (1984) Nicotinamide methylation tissue distribution, developmental and neoplastic changes. Biochimica et Biophysica Acta (BBA) Gen Subj 801:259–264

    Article  CAS  Google Scholar 

  9. Ridgeline Therapeutics—new mechanism-of-action drugs—ridgeline therapeutics—new drugs for widespread diseases. http://www.ridgelinetherapeutics.com/our-science.html. Accessed 26 May 2022

  10. Ulanovskaya OA, Zuhl AM, Cravatt BF (2013) NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol 9:300–306. https://doi.org/10.1038/nchembio.1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hong S, Moreno-Navarrete JM, Wei X et al (2015) Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat Med 21:887–894. https://doi.org/10.1038/nm.3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sperber H, Mathieu J, Wang Y et al (2015) The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 17:1523–1535. https://doi.org/10.1038/ncb3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jung J, Kim LJ, Wang X et al (2017) Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight. https://doi.org/10.1172/jci.insight.90019

    Article  PubMed  PubMed Central  Google Scholar 

  14. Policarpo RL, Decultot L, May E et al (2019) High-affinity alkynyl bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT). ChemRxiv

  15. Van Haren MJ, Sastre Toraño J, Sartini D et al (2016) A rapid and efficient assay for the characterization of substrates and inhibitors of nicotinamide N-methyltransferase. Biochemistry 55:5307–5315. https://doi.org/10.1021/acs.biochem.6b00733

    Article  CAS  PubMed  Google Scholar 

  16. Kannt A, Rajagopal S, Kadnur SV et al (2018) A small molecule inhibitor of nicotinamide N-methyltransferase for the treatment of metabolic disorders. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-22081-7

    Article  CAS  Google Scholar 

  17. Ruf S, Hallur MS, Anchan NK et al (2018) Novel nicotinamide analog as inhibitor of nicotinamide N-methyltransferase. Bioorganic Med Chem Lett 28:922–925. https://doi.org/10.1016/j.bmcl.2018.01.058

    Article  CAS  Google Scholar 

  18. Peng Y, Sartini D, Pozzi V et al (2011) Structural basis of substrate recognition in human nicotinamide N-methyltransferase. Biochemistry 50:7800–7808. https://doi.org/10.1021/bi2007614

    Article  CAS  PubMed  Google Scholar 

  19. Gao Y, Martin NI, van Haren MJ (2021) Nicotinamide N-methyl transferase (NNMT): an emerging therapeutic target. Drug Discov Today 26:2699–2706. https://doi.org/10.1016/j.drudis.2021.05.011

    Article  CAS  PubMed  Google Scholar 

  20. Khurshid Ahmad MH (2014) Drug discovery and in silico techniques: a mini-review. Enzym Eng. https://doi.org/10.4172/2329-6674.1000123

    Article  Google Scholar 

  21. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maestro | Schrödinger. https://www.schrodinger.com/products/maestro. Accessed 24 Jan 2022

  23. LigPrep | Schrödinger. https://www.schrodinger.com/products/ligprep. Accessed 24 Jan 2022

  24. Banks JL, Beard HS, Cao Y et al (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 26:1752–1780. https://doi.org/10.1002/jcc.20292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x

    Article  CAS  PubMed  Google Scholar 

  26. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhagwati S, Siddiqi MI (2020) Identification of potential soluble epoxide hydrolase (sEH) inhibitors by ligand-based pharmacophore model and biological evaluation. J Biomol Struct Dyn 38:4956–4966. https://doi.org/10.1080/07391102.2019.1691659

    Article  CAS  PubMed  Google Scholar 

  28. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  29. Neelakantan H, Wang HY, Vance V et al (2017) Structure-activity relationship for small molecule inhibitors of nicotinamide N-methyltransferase. J Med Chem 60:5015–5028. https://doi.org/10.1021/acs.jmedchem.7b00389

    Article  CAS  PubMed  Google Scholar 

  30. Van Haren MJ, Taig R, Kuppens J et al (2017) Inhibitors of nicotinamide: N -methyltransferase designed to mimic the methylation reaction transition state. Org Biomol Chem 15:6656–6667. https://doi.org/10.1039/c7ob01357d

    Article  CAS  PubMed  Google Scholar 

  31. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  32. SwissParam—Topology and parameters for small organic molecules. https://www.swissparam.ch/. Accessed 24 Jan 2022

  33. Hammer Ø (2009) GROMACS reference manual. Palaeontol Electron 1–168

  34. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  35. Quimque MTJ, Notarte KIR, Fernandez RAT et al (2021) Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J Biomol Struct Dyn 39:4316–4333. https://doi.org/10.1080/07391102.2020.1776639

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

UK and LP acknowledge University Grant Commission (UGC), New Delhi, India, for providing fellowship, Chemical repository of CSIR-Central Drug Research Institute is acknowledged for providing Compounds from Maybridge library for in vitro biological evaluation. Department of Biotechnology (DBT), Ministry of Science and Technology Government of India (Grant No. GAP0384) is also gratefully acknowledged for funding this work. This manuscript has CSIR-CDRI manuscript number 10425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Imran Siddiqi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1794 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushavah, U., Panigrahi, L., Ahmed, S. et al. Ligand-based in silico identification and biological evaluation of potential inhibitors of nicotinamide N-methyltransferase. Mol Divers 27, 1255–1269 (2023). https://doi.org/10.1007/s11030-022-10485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10485-7

Keywords

Navigation