Skip to main content

Advertisement

Log in

MD simulation-based screening approach identified tolvaptan as a potential inhibitor of Eg5

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

We discovered tolvaptan as a new Eg5 inhibitor using molecular dynamics simulation-based virtual screening. The Eg5-monastrol, Eg5-ispinesib, and Eg5-STLC complexes with “closed” L5 conformation obtained in MD simulation were used to generate a combined pharmacophore model, and this model was used during the process of virtual screening. Further, the MD simulation for 1 µs showed that the binding of tolvaptan to Eg5 was stable due to the closure of the α2/L5/α3 pocket. Tolvaptan belongs to the class of drugs called vaptans which are non-peptide vasopressin receptor antagonists. Since our virtual search for mitotic inhibitors identified tolvaptan as a potential candidate, we were interested in unraveling its antimitotic mechanism. Tolvaptan bound to purified Eg5-437H with a dissociation constant of 27 ± 3.8 µM. Tolvaptan inhibited the growth of HeLa cells through the mitotic block, and around 70% of these mitotic cells exhibited a characteristic monopolar spindle. Tolvaptan bound to goat brain tubulin with a dissociation constant of 103 ± 13 µM. The binding location of tolvaptan on tubulin overlapped with that of colchicine, according to molecular docking analysis. The combination of tolvaptan with STLC augmented mitotic bock with monopolar cells, whereas its combination with vinblastine increased mitotic block with bipolar cells. Since tolvaptan is found to have a significant cytotoxic effect on HeLa cells, it can be developed as a prospective anticancer agent either alone or in combination with other antimitotic drugs.

Graphical abstract

Tolvaptan was identified as an inhibitor of Eg5 in a MD simulation-based virtual screening using a combined pharmacophore model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mann BJ, Wadsworth P (2019) Kinesin-5 regulation and function in mitosis. Trends Cell Biol 29:66–79. https://doi.org/10.1016/j.tcb.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Saez I, Skoufias DA (2021) Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem Pharmacol 184:1–42. https://doi.org/10.1016/j.bcp.2020.114364

    Article  CAS  Google Scholar 

  3. Blangy A, Lane HA, d’Hérin P, Harper M, Kress M, Niggt EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169. https://doi.org/10.1016/0092-8674(95)90142-6

    Article  CAS  PubMed  Google Scholar 

  4. Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PM, Bousbaa H (2019) Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 440:64–81. https://doi.org/10.1016/j.canlet.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Tillement V, Remy MH, Raynaud-Messina B, Mazzolini L, Haren L, Merdes A (2009) Spindle assembly defects leading to the formation of a monopolar mitotic apparatus. Biol Cell 101:1–11. https://doi.org/10.1042/BC20070162

    Article  CAS  PubMed  Google Scholar 

  6. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974. Doi: https://doi.org/10.1126/science.286.5441.971

  7. Chin GM, Herbst R (2006) Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Mol Cancer Ther 5:2580–2591. https://doi.org/10.1158/1535-7163.MCT-06-0201

    Article  CAS  PubMed  Google Scholar 

  8. Ogunwa TH, Laudadio E, Galeazzi R, Miyanishi T (2019) Insights into the Molecular Mechanisms of Eg5 Inhibition by (+)-Morelloflavone. Pharmaceuticals 12:1–19. https://doi.org/10.3390/ph12020058

    Article  CAS  Google Scholar 

  9. Nakazawa J, Yajima J, Usui T, Ueki M, Takatsuki A, Imoto M, Toyoshima YY, Osada H (2003) A novel action of terpendole E on the motor activity of mitotic Kinesin Eg5. Chem Biol 10:131–137. https://doi.org/10.1016/S1074-5521(03)00020-6

    Article  CAS  PubMed  Google Scholar 

  10. Chen GY, Kang YJ, Gayek AS, Youyen W, Tüzel E, Ohi R, Hancock WO (2017) Eg5 inhibitors have contrasting effects on microtubule stability and metaphase spindle integrity. ACS Chem Biol 12:1038–1046. https://doi.org/10.1021/acschembio.6b01040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cochran JC, Gatial JE, Kapoor TM, Gilbert SP (2005) Monastrol inhibition of the mitotic kinesin Eg5. J Biol Chem 280:12658–12667. https://doi.org/10.1074/jbc.M413140200

    Article  CAS  PubMed  Google Scholar 

  12. Lad L, Luo L, Carson JD, Wood KW, Hartman JJ, Copeland RA, Sakowicz R (2008) Mechanism of inhibition of human KSP by ispinesib. Biochemistry 47:3576–3585. https://doi.org/10.1021/bi702061g

    Article  CAS  PubMed  Google Scholar 

  13. Turner J, Anderson R, Guo J, Beraud C, Fletterick R, Sakowicz R (2001) Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J Biol Chem 276:25496–25502. https://doi.org/10.1074/jbc.M100395200

    Article  CAS  PubMed  Google Scholar 

  14. Maliga Z, Kapoor TM, Mitchison TJ (2002) Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem Biol 9:989–996. https://doi.org/10.1016/S1074-5521(02)00212-0

    Article  CAS  PubMed  Google Scholar 

  15. Talapatra SK, Schüttelkopf AW, Kozielski F (2012) The structure of the ternary Eg5–ADP–ispinesib complex. Acta Crystallogr D 68:1311–1319. https://doi.org/10.1107/S0907444912027965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang W (2011) Exploring the Intermediate States of ADP− ATP Exchange: A Simulation Study on Eg5. J Phys Chem 115:784–795. https://doi.org/10.1021/jp107255t

    Article  CAS  Google Scholar 

  17. Cochran JC, Gilbert SP (2005) ATPase mechanism of Eg5 in the absence of microtubules: insight into microtubule activation and allosteric inhibition by monastrol. Biochemistry 44:16633–16648. https://doi.org/10.1021/bi051724w

    Article  CAS  PubMed  Google Scholar 

  18. Behnke-Parks WM, Vendome J, Honig B, Maliga Z, Moores C, Rosenfeld SS (2011) Loop L5 acts as a conformational latch in the mitotic kinesin Eg5. J Biol Chem 286:5242–5253. https://doi.org/10.1074/jbc.M110.192930

    Article  CAS  PubMed  Google Scholar 

  19. Verma S, Prabhakar Y (2015) Target based drug design-a reality in virtual sphere. Curr Med Chem 22:1603–1630. https://doi.org/10.2174/0929867322666150209151209

    Article  CAS  PubMed  Google Scholar 

  20. Orellana L (2019) Large-scale conformational changes and protein function: breaking the in silico barrier. Front Mol Biosci 6:1–18. https://doi.org/10.3389/fmolb.2019.00117

    Article  CAS  Google Scholar 

  21. Salo-Ahen OM, Alanko I, Bhadane R, Bonvin AM, Honorato RV, Hossain S, Juffer AH, Kabedev A, Lahtela-Kakkonen M, Larsen AS, Lescrinier E, Marimuthu P, Mirza MU, Mustafa G, Nunes-Alves A, Pantsar T, Saadabadi A, Singaravelu K, Vanmeert M (2021) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9:1–60. https://doi.org/10.3390/pr9010071

    Article  CAS  Google Scholar 

  22. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112. https://doi.org/10.1056/NEJMoa065181

    Article  CAS  PubMed  Google Scholar 

  23. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367:2407–2418. https://doi.org/10.1056/NEJMoa1205511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patil VM, Gaurav A, Garg P, Masand N (2021) Non-cancer to anti-cancer: investigation of human ether-a-go-go-related gene potassium channel inhibitors as potential therapeutics. J Egypt Natl Cancer Inst 33:1–16. https://doi.org/10.1186/s43046-021-00091-3

    Article  Google Scholar 

  25. Shoaf SE, Mallikaarjun S, Bricmont P (2012) Effect of grapefruit juice on the pharmacokinetics of tolvaptan, a non-peptide arginine vasopressin antagonist, in healthy subjects. Eur J Clin Pharmacol 68:207–211. https://doi.org/10.1007/s00228-011-1106-4

    Article  CAS  PubMed  Google Scholar 

  26. Shoaf SE, Bricmont P, Mallikaarjun S (2012) Effects of CYP3A4 inhibition and induction on the pharmacokinetics and pharmacodynamics of tolvaptan, a non-peptide AVP antagonist in healthy subjects. Br J Clin Pharmacol 73:579–587. https://doi.org/10.1111/j.1365-2125.2011.04114.x

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y, Beland FA, Chen S, Liu F, Guo L, Fang JL (2015) Mechanisms of tolvaptan-induced toxicity in HepG2 cells. Biochem Pharmacol 95:324–336. https://doi.org/10.1016/j.bcp.2015.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez FJ, Coughtrie M, Tukey RH (2018) Drug metabolism. In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds) Goodman & Gilman’s the pharmacologic basis of therapeutics, 13th edn. McGraw-Hill, New York, pp 85–100

    Google Scholar 

  29. Fiser A, Do RKG, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773. https://doi.org/10.1110/ps.9.9.1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  31. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  32. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, MacKerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273. https://doi.org/10.1021/ct300400x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  34. Sebastian J, Rathinasamy K (2019) Benserazide Perturbs Kif15-kinesin Binding Protein Interaction with Prolonged Metaphase and Defects in Chromosomal Congression: A Study Based on in silico Modeling and Cell Culture. Mol Inform 39:1–13. https://doi.org/10.1002/minf.201900035

    Article  CAS  Google Scholar 

  35. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154. https://doi.org/10.1021/ci300363c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paramo T, East A, Garzón D, Ulmschneider MB, Bond PJ (2014) Efficient characterization of protein cavities within molecular simulation trajectories: trj_cavity. J Chem Theory Comput 10:2151–2164. https://doi.org/10.1021/ct401098b

    Article  CAS  PubMed  Google Scholar 

  37. Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696. https://doi.org/10.1093/bioinformatics/btl461

    Article  CAS  PubMed  Google Scholar 

  38. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671. https://doi.org/10.1007/s10822-006-9087-6

    Article  CAS  PubMed  Google Scholar 

  39. Raghav D, Sebastian J, Rathinasamy K (2018) Biochemical and Biophysical characterization of curcumin binding to human mitotic kinesin Eg5: Insights into the inhibitory mechanism of curcumin on Eg5. Int J Biol Macromol 109:1189–1208. https://doi.org/10.1016/j.ijbiomac.2017.11.115

    Article  CAS  PubMed  Google Scholar 

  40. Ashraf SM, Sebastian J, Rathinasamy K (2019) Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Prolif 52:1–17. https://doi.org/10.1111/cpr.12558

    Article  CAS  Google Scholar 

  41. Sebastian J, Rathinasamy K (2021) Sertaconazole induced toxicity in HeLa cells through mitotic arrest and inhibition of microtubule assembly. Naunyn-Schmiedeberg’s Arch Pharmacol 394:1231–1249. https://doi.org/10.1007/s00210-021-02059-5

    Article  CAS  Google Scholar 

  42. Rathinasamy K, Panda D (2008) Kinetic stabilization of microtubule dynamic instability by benomyl increases the nuclear transport of p53. Biochem Pharmacol 76:1669–1680. https://doi.org/10.1016/j.bcp.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  43. Mohan L, Raghav D, Ashraf SM, Sebastian J, Rathinasamy K (2018) Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine. Biomed Pharmacother 105:506–517. https://doi.org/10.1016/j.biopha.2018.05.127

    Article  CAS  PubMed  Google Scholar 

  44. Hamel E, Lin CM (1981) Glutamate-induced polymerization of tubulin: characteristics of the reaction and application to the large-scale purification of tubulin. Arch Biochem Biophys 209:29–40. https://doi.org/10.1016/0003-9861(81)90253-8

    Article  CAS  PubMed  Google Scholar 

  45. Gupta K, Bishop J, Peck A, Brown J, Wilson L, Panda D (2004) Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin. Biochemistry 43:6645–6655. https://doi.org/10.1021/bi036112v

    Article  CAS  PubMed  Google Scholar 

  46. Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S (2012) FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28:286–287. https://doi.org/10.1093/bioinformatics/btr651

    Article  CAS  PubMed  Google Scholar 

  47. Scarabelli G, Grant BJ (2014) Kinesin-5 allosteric inhibitors uncouple the dynamics of nucleotide, microtubule, and neck-linker binding sites. Biophys J 107:2204–2213. https://doi.org/10.1016/j.bpj.2014.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Larson AG, Naber N, Cooke R, Pate E, Rice SE (2010) The conserved L5 loop establishes the pre-powerstroke conformation of the Kinesin-5 motor, eg5. Biophys J 98:2619–2627. https://doi.org/10.1016/j.bpj.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Waitzman JS, Larson AG, Cochran JC, Naber N, Cooke R, Kull FJ, Pate E, Rice SE (2011) The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5. Biophys J 101:2760–2769. https://doi.org/10.1016/j.bpj.2011.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yan Y, Sardana V, Xu B, Homnick C, Halczenko W, Buser CA, Schaber M, Hartman GD, Huber HE, Kuo LC (2004) Inhibition of a mitotic motor protein: where, how, and conformational consequences. J Mol Biol 335:547–554. https://doi.org/10.1016/j.jmb.2003.10.074

    Article  CAS  PubMed  Google Scholar 

  51. Maliga Z, Mitchison TJ (2006) Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chem Biol 6:1–9. https://doi.org/10.1186/1472-6769-6-2

    Article  CAS  Google Scholar 

  52. Muretta JM, Behnke-Parks WM, Major J, Petersen KJ, Goulet A, Moores CA, Thomas DD, Rosenfeld SS (2013) Loop L5 assumes three distinct orientations during the ATPase cycle of the mitotic kinesin Eg5: a transient and time-resolved fluorescence study. J Biol Chem 288:34839–34849. https://doi.org/10.1074/jbc.M113.518845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fang JL, Wu Y, Gamboa da Costa G, Chen S, Chitranshi P, Beland FA (2016) Human sulfotransferases enhance the cytotoxicity of tolvaptan. Toxicol Sci 150:27–39. https://doi.org/10.1093/toxsci/kfv311

    Article  CAS  PubMed  Google Scholar 

  54. Hamel E (2018) Interactions of tubulin with small ligands. In: Avila J (ed) Microtubule proteins. CRC Press, Boca Raton, pp 89–191

    Chapter  Google Scholar 

  55. Uzbekov R, Kireyev I, Prigent C (2002) Centrosome separation: respective role of microtubules and actin filaments. Biol Cell 94:275–288. https://doi.org/10.1016/S0248-4900(02)01202-9

    Article  CAS  PubMed  Google Scholar 

  56. Rathinasamy K, Panda D (2006) Suppression of microtubule dynamics by benomyl decreases tension across kinetochore pairs and induces apoptosis in cancer cells. FEBS J 273:4114–4128. https://doi.org/10.1111/j.1742-4658.2006.05413.x

    Article  CAS  PubMed  Google Scholar 

  57. Clément MJ, Rathinasamy K, Adjadj E, Toma F, Curmi PA, Panda D (2008) Benomyl and colchicine synergistically inhibit cell proliferation and mitosis: evidence of distinct binding sites for these agents in tubulin. Biochemistry 47:13016–13025. https://doi.org/10.1021/bi801136q

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank NITC and MHRD, Government of India for the financial support in the form of a scholarship to Mr. Jomon Sebastian and Mr. Darpan Raghav and Infrastructural facilities to Dr. Rathinasamy K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Rathinasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, J., Raghav, D. & Rathinasamy, K. MD simulation-based screening approach identified tolvaptan as a potential inhibitor of Eg5. Mol Divers 27, 1203–1221 (2023). https://doi.org/10.1007/s11030-022-10482-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10482-w

Keywords

Navigation