Skip to main content

Advertisement

Log in

Benzimidazole-linked pyrazolo[1,5-a]pyrimidine conjugates: synthesis and detail evaluation as potential anticancer agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A library of benzimidazole briged pyrazolo[1,5-a]pyrimidine (6a-q) was designed, synthesized and subjected for evaluation for cytotoxic potential. Antiproliferative activity, ranging from 3.1–51.5 μM, was observed against a panel of cancer cell lines which included MCF-7 (breast cancer), A549 (lung cancer), HeLa (cervical cancer) and SiHa (cervical cancer). Among them, 6k, 6l, 6n and 6o have shown significant cytotoxicity and were investigated further to study their probable mechanism of action against MCF-7 cell line. Accumulation of cells at sub-G1 phase was observed in flow cytometric analysis. The detachment of cells from substratum and membrane blebbing seen under bright field microscopy supports the ability of these conjugates to induce apoptosis. Immunostaining and western blot analysis showed EGFR, p-EGFR, STAT3, and p-STAT3 significant downregulation. Western blot analysis demonstrated an elevated level of apoptotic proteins such as p53, p21, Bax, whereas a decrease in the antiapoptotic protein Bcl-2 and procaspase-9, confirming the ability of these conjugates to trigger cell death by apoptosis. EGFR kinase assay confirms the specific activity of conjugates. Molecular docking simulation study disclosed that these molecules fit well in ATP-binding pocket of EGFR. The analysis of docking poses and the atomic interactions of different conjugates rationalize the structural–activity relationship in this series.

Graphical abstract

Benzimidazole-linked pyrazolo[1,5-a]pyrimidine conjugates were synthesized and evaluated for their anticancer potential. All the conjugates have significant anticancer potential. Further mechanistic studies revealed that these conjugates arrest cancer cell growth by EGFR/STAT3 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225. https://doi.org/10.1016/S0092-8674(00)00114-8

    Article  CAS  PubMed  Google Scholar 

  2. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137. https://doi.org/10.1038/35052073

    Article  CAS  PubMed  Google Scholar 

  3. Schlessinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306:1506–1507. https://doi.org/10.1126/science.1105396

    Article  CAS  PubMed  Google Scholar 

  4. Thiel KW, Carpenter G (2007) Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation. Proc Natl Acad Sci 104:19238–19243. https://doi.org/10.1073/pnas.0703854104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jura N, Endres NF, Engel K et al (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–1307. https://doi.org/10.1016/j.cell.2009.04.025

    Article  PubMed  PubMed Central  Google Scholar 

  6. Holbro T, Hynes NE (2004) ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44:195–217. https://doi.org/10.1146/annurev.pharmtox.44.101802.121440

    Article  CAS  PubMed  Google Scholar 

  7. Speake G, Holloway B, Costello G (2005) Recent developments related to the EGFR as a target for cancer chemotherapy. Curr Opin Pharmacol 5:343–349. https://doi.org/10.1016/j.coph.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  8. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167. https://doi.org/10.1093/emboj/19.13.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Temam S, Kawaguchi H, El-Naggar AK et al (2007) Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol 25:2164–2170. https://doi.org/10.1200/JCO.2006.06.6605

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka E, Hashimoto Y, Ito T et al (2005) The clinical significance of Aurora-A/STK15/BTAK expression in human esophageal squamous cell carcinoma. Clin Cancer Res 11:1827–1834. https://doi.org/10.1158/1078-0432.CCR-04-1627

    Article  CAS  PubMed  Google Scholar 

  11. Kurai M, Shiozawa T, Shih H-C et al (2005) Expression of Aurora kinases A and B in normal, hyperplastic, and malignant human endometrium: Aurora B as a predictor for poor prognosis in endometrial carcinoma. Hum Pathol 36:1281–1288. https://doi.org/10.1016/j.humpath.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  12. Rimawi MF, Shetty PB, Weiss HL et al (2010) Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer 116:1234–1242. https://doi.org/10.1002/cncr.24816

    Article  PubMed  Google Scholar 

  13. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol/Hematol 19:183–232. https://doi.org/10.1016/1040-8428(94)00144-I

    Article  CAS  PubMed  Google Scholar 

  14. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. Ca-Cancer J Clin 57:43–66. https://doi.org/10.3322/canjclin.57.1.43

    Article  PubMed  Google Scholar 

  15. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181. https://doi.org/10.1038/nrc2088

    Article  CAS  PubMed  Google Scholar 

  16. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594. https://doi.org/10.4065/83.5.584

    Article  PubMed  Google Scholar 

  17. Wong TW, Lee FY, Yu C et al (2006) Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clin Cancer Res 12:6186–6193. https://doi.org/10.1158/1078-0432.CCR-06-0642

    Article  CAS  PubMed  Google Scholar 

  18. Traxler P, Allegrini PR, Brandt R et al (2004) AEE788 A dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64:4931–4941. https://doi.org/10.1158/0008-5472.CAN-03-3681

    Article  CAS  PubMed  Google Scholar 

  19. Kris MG, Natale RB, Herbst RS et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non–small cell lung cancer: a randomized trial. JAMA 290:2149–2158. https://doi.org/10.1001/jama.290.16.2149

    Article  CAS  PubMed  Google Scholar 

  20. Dowell J, Minna JD, Kirkpatrick P (2005) Erlotinib hydrochloride. Nat Rev Drug Discov 4:13–14. https://doi.org/10.1038/nrd1612

    Article  CAS  PubMed  Google Scholar 

  21. Vasquez RJ, Howell B, Yvon A, Wadsworth P, Cassimeris L (1997) Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell 8:973–985. https://doi.org/10.1091/mbc.8.6.973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heathcote DA, Patel H, Kroll SH et al (2010) A novel pyrazolo [1, 5-a] pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. J Med Chem 53:8508–8522. https://doi.org/10.1016/j.bmcl.2020.127432

    Article  CAS  PubMed  Google Scholar 

  23. Gao M, Duan L, Luo J et al (2013) Discovery and optimization of 3-(2-(Pyrazolo [1, 5-a] pyrimidin-6-yl) ethynyl) benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors. J Med Chem 56:3281–3295. https://doi.org/10.1021/jm301824k

    Article  CAS  PubMed  Google Scholar 

  24. Selleri S, Bruni F, Costagli C et al (2005) A novel selective GABAA α1 receptor agonist displaying sedative and anxiolytic-like properties in rodents. J Med Chem 48:6756–6760. https://doi.org/10.1021/jm058002n

    Article  CAS  PubMed  Google Scholar 

  25. Popik P, Kostakis E, Krawczyk M et al (2006) The anxioselective agent 7-(2-chloropyridin-4-yl) pyrazolo-[1, 5-a]-pyrimidin-3-yl](pyridin-2-yl) methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at α1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 319:1244–1252. https://doi.org/10.1124/jpet.106.107201

    Article  CAS  PubMed  Google Scholar 

  26. Kamal A, Tamboli JR, Nayak VL, Adil S, Vishnuvardhan M, Ramakrishna S (2013) Synthesis of pyrazolo [1, 5-a] pyrimidine linked aminobenzothiazole conjugates as potential anticancer agents. Bioorg Med Chem Lett 23:3208–3215. https://doi.org/10.1016/j.bmcl.2013.03.129

    Article  CAS  PubMed  Google Scholar 

  27. McClue SJ, Blake D, Clarke R et al (2002) In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 102:463–468. https://doi.org/10.1002/ijc.10738

    Article  CAS  PubMed  Google Scholar 

  28. Kamal A, Tamboli JR, Ramaiah MJ et al (2012) Anthranilamide-Pyrazolo [1, 5-a] pyrimidine Conjugates as p53 Activators in Cervical Cancer Cells. ChemMedChem 7:1453–1464. https://doi.org/10.1002/cmdc.201200205

    Article  CAS  PubMed  Google Scholar 

  29. Bagul C, Rao GK, Makani VKK, Tamboli JR, Pal-Bhadra M, Kamal A (2017) Synthesis and biological evaluation of chalcone-linked pyrazolo [1, 5-a] pyrimidines as potential anticancer agents. MedChemComm 8:1810–1816. https://doi.org/10.1039/C7MD00193B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mullagiri K, Nayak VL, Sunkari S et al (2018) New (3-(1 H-benzo [d] imidazol-2-yl))/(3-(3 H-imidazo [4, 5-b] pyridin-2-yl))-(1 H-indol-5-yl)(3, 4, 5-trimethoxyphenyl) methanone conjugates as tubulin polymerization inhibitors. MedChemComm 9:275–281. https://doi.org/10.1039/C7MD00450H

    Article  CAS  PubMed  Google Scholar 

  31. Donthiboina K, Anchi P, Gurram S et al (2020) Synthesis and biological evaluation of substituted N-(2-(1H-benzo [d] imidazol-2-yl) phenyl) cinnamides as tubulin polymerization inhibitors. Bioorg Chem 103:104191. https://doi.org/10.1016/j.bioorg.2020.104191

    Article  CAS  PubMed  Google Scholar 

  32. Mani GS, Anchi P, Sunkari S et al (2020) Synthesis of (Z)-3-(arylamino)-1-(3-phenylimidazo [1, 5-a] pyridin-1-yl) prop-2-en-1-ones as potential cytotoxic agents. Bioorg Med Chem Lett 30:127432. https://doi.org/10.1016/j.bmcl.2020.127432

    Article  CAS  PubMed  Google Scholar 

  33. Ramya PS, Angapelly S, Rani RS et al (2020) Hypervalent iodine (III) catalyzed rapid and efficient access to benzimidazoles, benzothiazoles and quinoxalines: Biological evaluation of some new benzimidazole-imidazo [1, 2-a] pyridine conjugates. Arab J Chem 13:120–133. https://doi.org/10.1016/j.arabjc.2017.02.007

    Article  CAS  Google Scholar 

  34. Korrapati SB, Yedla P, Pillai GG et al (2021) In-silico driven design and development of spirobenzimidazo-quinazolines as potential DNA gyrase inhibitors. Biomed Pharmacother 134:111132. https://doi.org/10.1016/j.biopha.2020.111132

    Article  CAS  PubMed  Google Scholar 

  35. Kamal A, Reddy KS, Ahmed SK et al (2006) Anti-tubercular agents. Part 3. Benzothiadiazine as a novel scaffold for anti-Mycobacterium activity. Bioorg Med Chem 14:650–658. https://doi.org/10.1016/j.bmc.2005.08.063

    Article  CAS  PubMed  Google Scholar 

  36. Pancholia S, Dhameliya TM, Shah P et al (2016) Benzo[d]thiazol-2-yl(piperazin-1-yl) methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies. Eur J Med Chem 116:187–199. https://doi.org/10.1016/j.ejmech.2016.03.060

    Article  CAS  PubMed  Google Scholar 

  37. Mahesh R, Nayak VL, Babu KS et al (2017) Design, Synthesis, and in vitro and in vivo Evaluations of (Z)-3, 4, 5-Trimethoxystyrylbenzenesulfonamides/sulfonates as Highly Potent Tubulin Polymerization Inhibitors. ChemMedChem 12:678–700. https://doi.org/10.1002/cmdc.201600643

    Article  CAS  PubMed  Google Scholar 

  38. Bhagat S, Supriya M, Pathak S, Sriram D, Chakraborti AK (2019) α-Sulfonamidophosphonates as new anti-mycobacterial chemotypes: Design, development of synthetic methodology, and biological evaluation. Bioorg Chem 82:246–252. https://doi.org/10.1016/j.bioorg.2018.09.023

    Article  CAS  PubMed  Google Scholar 

  39. Schneider G, Schneider P, Renner S (2006) Scaffold-hopping: how far can you jump? Qsar Comb Sci 25:1162–1171. https://doi.org/10.1002/qsar.200610091

    Article  CAS  Google Scholar 

  40. Padmaja P, Rao GK, Indrasena A et al (2015) Synthesis and biological evaluation of novel pyrano [3, 2-c] carbazole derivatives as anti-tumor agents inducing apoptosis via tubulin polymerization inhibition. Org Biomol Chem 13:1404–1414. https://doi.org/10.1039/C4OB02015D

    Article  CAS  PubMed  Google Scholar 

  41. Srinivas C, Ramaiah MJ, Lavanya A et al (2015) Novel etoposide analogue modulates expression of angiogenesis associated micrornas and regulates cell proliferation by targeting STAT3 in breast cancer. PLoS ONE 10:e0142006. https://doi.org/10.1371/journal.pone.0142006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carter RE, Sorkin A (1998) Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J Biol Chem 273:35000–35007. https://doi.org/10.1074/jbc.273.52.35000

    Article  CAS  PubMed  Google Scholar 

  43. Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272. https://doi.org/10.1074/jbc.M207135200

    Article  CAS  PubMed  Google Scholar 

  44. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford, CT; 2016.

  46. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14

    Article  CAS  Google Scholar 

  47. he PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.

  48. Shrivastava N, Naim MJ, Alam MJ, Nawaz F, Ahmed S, Alam O (2017) Benzimidazole scaffold as anticancer agent: synthetic approaches and structure–activity relationship. Arch Pharm 350:e201700040. https://doi.org/10.1002/ardp.201700040

    Article  CAS  Google Scholar 

  49. Kamal A, Shaik AB, Polepalli S et al (2015) Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg Med Chem 23:1082–1095. https://doi.org/10.1016/j.bmc.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  50. Sharma P, Reddy TS, Thummuri D et al (2016) Synthesis and biological evaluation of new benzimidazole-thiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents. Eur J Med Chem 124:608–621. https://doi.org/10.1016/j.ejmech.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  51. Padhy GK, Panda J, Behera AK (2019) Synthesis and Characterization of Novel N-Benzylbenzimidazole Linked Pyrimidine Derivatives as Anticancer Agents. Indian J Pharm Educ Res 53:S129–S134. https://doi.org/10.5530/ijper.53.2s.57

    Article  CAS  Google Scholar 

  52. Johnson LN (2009) Protein kinase inhibitors: contributions from structure to clinical compounds. Q Rev Biophys 42:1–40. https://doi.org/10.1017/S0033583508004745

    Article  CAS  PubMed  Google Scholar 

  53. Warnault P, Yasri A, Coisy-Quivy M et al (2013) Recent advances in drug design of epidermal growth factor receptor inhibitors. Curr Med Chem 20:2043–2067. https://doi.org/10.2174/0929867311320160001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author C.B acknowledges the Department of Pharmaceuticals (Ministry of Chemicals and Fertilizers, Govt. of India) for the financial support & the CSIR-IICT, Hyderabad for providing facilities. K.R.G thanks UGC for his fellowship. This work was financially supported by the CSIR 12th FYP CSC0111 (SMiLE). The authors thank Y. Suresh for the Flow Cytometry and Confocal Microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Kamal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1412 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagul, C., Rao, G.K., Veena, I. et al. Benzimidazole-linked pyrazolo[1,5-a]pyrimidine conjugates: synthesis and detail evaluation as potential anticancer agents. Mol Divers 27, 1185–1202 (2023). https://doi.org/10.1007/s11030-022-10481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10481-x

Keywords

Navigation