Skip to main content

Advertisement

Log in

Discovery of potential mTOR inhibitors from Cichorium intybus to find new candidate drugs targeting the pathological protein related to the breast cancer: an integrated computational approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Breast cancer is the most common malignancy among women. It is a complex condition with many subtypes based on the hormone receptor. The mammalian target of the rapamycin (mTOR) pathway regulates cell survival, metabolism, growth, and protein synthesis in response to upstream signals in both normal physiological and pathological situations, primarily in cancer. The objective of this study was to screen for a potential target to inhibit the mTOR using a variety of inhibitors derived from Cichorium intybus and to identify the one with the highest binding affinity for the receptor protein. Initially, AutoDock Vina was used to perform structure-based virtual screening, as protein-like interactions are critical in drug development. For the comparative analysis, 110 components of Cichorium intybus were employed and ten FDA-approved anticancer medicines, including everolimus, an mTOR inhibitor. Further, the drug-likeness and ADMET properties were investigated to evaluate the anti-breast cancer activity by applying Lipinski's rule of five to the selected molecules. The promising candidates were then subjected to three replica molecular dynamics simulations run for 100 ns, followed by binding free energy estimation using MM-GBSA. The data were analyzed using root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and protein–ligand interactions to determine the stability of the protein–ligand complex. Based on the results, taraxerone (98) revealed optimum binding affinities with mTOR, followed by stigmasterol (110) and rutin (104), which compared favorably to the control compounds. Subsequently, bioactive compounds derived from Cichorium intybus may serve as lead molecules for developing potent and effective mTOR inhibitors to treat breast cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

All data generated during this study are included in supplementary information files.

Code availability

Not applicable.

References

  1. Siegel R, DeSantis C, Jemal A (2014) Colorectal cancer statistics, 2014. CA Cancer J Clin 64:104–117. https://doi.org/10.3322/caac.21220

    Article  PubMed  Google Scholar 

  2. Chan S, Scheulen ME, Johnston S et al (2005) Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23:5314–5322. https://doi.org/10.1200/JCO.2005.66.130

    Article  CAS  PubMed  Google Scholar 

  3. Castellanos M, Gubern C, Kadar E (2016) mTOR: exploring a new potential therapeutic target for stroke. In: Molecules to medicine with mTOR. Elsevier, pp 105–122

  4. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou Z, Tao T, Li H, Zhu X (2020) mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci 10:1–11. https://doi.org/10.1186/s13578-020-00396-1

    Article  CAS  Google Scholar 

  6. Unni N, Arteaga CL (2019) Is dual mTORC1 and mTORC2 therapeutic blockade clinically feasible in cancer? JAMA Oncol 5:1564–1565. https://doi.org/10.1001/jamaoncol.2019.2525

    Article  PubMed  Google Scholar 

  7. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619. https://doi.org/10.1038/nrg1879

    Article  CAS  PubMed  Google Scholar 

  8. Samuels Y, Wang Z, Bardelli A, et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science (80-). https://doi.org/10.1126/science.1096502

  9. Gera J, Lichtenstein A (2011) The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma. Leuk Lymphoma 52:1857–1866. https://doi.org/10.3109/10428194.2011.580478

    Article  CAS  PubMed  Google Scholar 

  10. Dowling RJO, Topisirovic I, Fonseca BD, Sonenberg N (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta (BBA)-Proteins Proteom 1804:433–439. https://doi.org/10.1016/j.bbapap.2009.12.001

  11. Vittorio S, Gitto R, Adornato I et al (2021) In silico strategy for targeting the mTOR kinase at rapamycin binding site by small molecules. Molecules 26:1103. https://doi.org/10.3390/molecules26041103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zulkipli NN, Zakaria R, Long I et al (2020) In silico analyses and cytotoxicity study of Asiaticoside and Asiatic acid from Malaysian plant as potential mTOR inhibitors. Molecules 25:3991. https://doi.org/10.3390/molecules25173991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol cell Biol 12:21–35. https://doi.org/10.1038/nrm3025

    Article  CAS  PubMed  Google Scholar 

  14. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976. https://doi.org/10.1016/j.cell.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mossmann D, Park S, Hall MN (2018) mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 18:744–757. https://doi.org/10.1038/s41568-018-0074-8

    Article  CAS  PubMed  Google Scholar 

  16. Hare SH, Harvey AJ (2017) mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res 7:383

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hua H, Kong Q, Zhang H et al (2019) Targeting mTOR for cancer therapy. J Hematol Oncol 12:1–19. https://doi.org/10.1186/s13045-019-0754-1

    Article  CAS  Google Scholar 

  18. Baselga J (2011) Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist 16:12–19. https://doi.org/10.1634/theoncologist.2011-S1-12

    Article  PubMed  Google Scholar 

  19. Di Cosimo S, Baselga J (2009) Phosphoinositide 3-kinase mutations in breast cancer: a “good” activating mutation? Clin Cancer Res 15:5017–5019. https://doi.org/10.1158/1078-0432.CCR-09-1173

    Article  CAS  PubMed  Google Scholar 

  20. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091. https://doi.org/10.1158/0008-5472.CAN-07-6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saran U, Foti M, Dufour J-F (2015) Cellular and molecular effects of the mTOR inhibitor everolimus. Clin Sci 129:895–914. https://doi.org/10.1042/CS20150149

    Article  CAS  Google Scholar 

  22. Kuo C-T, Chen C-L, Li C-C et al (2019) Immunofluorescence can assess the efficacy of mTOR pathway therapeutic agent Everolimus in breast cancer models. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-45319-4

    Article  CAS  Google Scholar 

  23. Ciołczyk-Wierzbicka D, Gil D, Zarzycka M, Laidler P (2020) mTOR inhibitor everolimus reduces invasiveness of melanoma cells. Hum Cell 33:88–97. https://doi.org/10.1007/s13577-019-00270-4

    Article  CAS  PubMed  Google Scholar 

  24. MacKeigan JP, Krueger DA (2015) Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. Neuro Oncol 17:1550–1559. https://doi.org/10.1093/neuonc/nov152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian T, Li X, Zhang J (2019) mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci 20:755. https://doi.org/10.3390/ijms20030755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Street RA, Sidana J, Prinsloo G (2013) Cichorium intybus: Traditional uses, phytochemistry, pharmacology, and toxicology. Evid-Based Complement Altern Med. https://doi.org/10.1155/2013/579319

    Article  Google Scholar 

  27. Bais HP, Ravishankar GA (2001) Cichorium intybus L–cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. J Sci Food Agric 81:467–484. https://doi.org/10.1002/jsfa.817

    Article  CAS  Google Scholar 

  28. Wang Y, Lin Z, Zhang B et al (2019) Cichorium intybus L. extract suppresses experimental gout by inhibiting the NF-κB and NLRP3 signaling pathways. Int J Mol Sci 20:4921. https://doi.org/10.1002/jsfa.817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chandra S, Kumar M, Dwivedi P, Arti K (2016) Studies on industrial importance and medicinal value of chicory plant (Cichorium intybus L.). Int J Adv Res 4:1060–1071

    CAS  Google Scholar 

  30. Liu Q, Chen Y, Shen C et al (2017) Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB. FASEB J 31:1494–1507. https://doi.org/10.1096/fj.201601071R

    Article  CAS  PubMed  Google Scholar 

  31. El-Sayed YS, Lebda MA, Hassinin M, Neoman SA (2015) Chicory (Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity. PLoS ONE 10:e0121549. https://doi.org/10.1371/journal.pone.0121549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Süntar I, Akkol EK, Keles H et al (2012) Comparative evaluation of traditional prescriptions from Cichorium intybus L. for wound healing: stepwise isolation of an active component by in vivo bioassay and its mode of activity. J Ethnopharmacol 143:299–309. https://doi.org/10.1016/j.jep.2012.06.036

    Article  CAS  PubMed  Google Scholar 

  33. Behboodi S, Baghbani-Arani F, Abdalan S, Shandiz SAS (2019) Green engineered biomolecule-capped silver nanoparticles fabricated from Cichorium intybus extract: in vitro assessment on apoptosis properties toward human breast cancer (MCF-7) cells. Biol Trace Elem Res 187:392–402. https://doi.org/10.1007/s12011-018-1392-0

    Article  CAS  PubMed  Google Scholar 

  34. Hazra B, Sarkar R, Bhattacharyya S, Roy P (2002) Tumour inhibitory activity of chicory root extract against Ehrlich ascites carcinoma in mice. Fitoterapia 73:730–733. https://doi.org/10.1016/S0367-326X(02)00232-0

    Article  CAS  PubMed  Google Scholar 

  35. Khan MF, Nasr FA, Noman OM et al (2020) Cichorins D-F: three new compounds from Cichorium intybus and their biological effects. Molecules 25:4160. https://doi.org/10.3390/molecules25184160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imam KMSU, Xie Y, Liu Y et al (2019) Cytotoxicity of Cichorium intybus L. metabolites. Oncol Rep 42:2196–2212. https://doi.org/10.3892/or.2019.7336

    Article  CAS  PubMed  Google Scholar 

  37. Conforti F, Ioele G, Statti GA et al (2008) Anti-proliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem Toxicol 46:3325–3332. https://doi.org/10.1016/j.fct.2008.08.004

    Article  CAS  PubMed  Google Scholar 

  38. Lee K-T, Kim J-I, Park H-J et al (2000) Differentiation-inducing effect of magnolialide, a 1β-hydroxyeudesmanolide isolated from Cichorium intybus, on human leukemia cells. Biol Pharm Bull 23:1005–1007. https://doi.org/10.1248/bpb.23.1005

    Article  CAS  PubMed  Google Scholar 

  39. Abu-Dahab R, Afifi F (2007) Anti-proliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Sci Pharm 75:121–146. https://doi.org/10.3797/scipharm.2007.75.121

    Article  Google Scholar 

  40. Saleem M, Abbas K, Naseer F et al (2014) Anticancer activity of n-hexane extract of Cichorium intybus on lymphoblastic leukemia cells (Jurkat cells). African J plant Sci 8:315–319. https://doi.org/10.5897/AJPS2013.1021

    Article  Google Scholar 

  41. Nawab A, Yunus M, Mahdi AA, Gupta S (2011) Evaluation of anticancer properties of medicinal plants from the Indian sub-continent. Mol Cell Pharmacol 3:21–29

    Google Scholar 

  42. Rahimipour A, Dehghan Nayeri N, Mehrandish R, AwsatMellati A (2017) Anti-cancer activity of methanol extracts of cichoriumintybus on human breast cancer SKBR3 Cell Line. Razavi Int J Med. https://doi.org/10.5812/RIJM.38369

    Article  Google Scholar 

  43. Esmaeilbeig M, Kouhpayeh SA, Amirghofran Z (2015) An investigation of the growth inhibitory capacity of several medicinal plants from Iran on tumor cell lines. Iran J cancer Prev. https://doi.org/10.17795/ijcp-4032

  44. Seto M, Miyase T, Umehara K et al (1988) Sesquiterpene lactones from Cichorium endivia L. and C. intybus L. and cytotoxic activity. Chem Pharm Bull 36:2423–2429. https://doi.org/10.1248/cpb.36.2423

    Article  CAS  Google Scholar 

  45. Carazzone C, Mascherpa D, Gazzani G, Papetti A (2013) Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem 138:1062–1071. https://doi.org/10.1016/j.foodchem.2012.11.060

    Article  CAS  PubMed  Google Scholar 

  46. Malarz J, Stojakowska A, Szneler E, Kisiel W (2013) A new neolignan glucoside from hairy roots of Cichorium intybus. Phytochem Lett 6:59–61. https://doi.org/10.1016/j.phytol.2012.10.011

    Article  CAS  Google Scholar 

  47. Tardugno R, Pozzebon M, Beggio M et al (2018) Polyphenolic profile of Cichorium intybus L. endemic varieties from the Veneto region of Italy. Food Chem 266:175–182. https://doi.org/10.1016/j.foodchem.2018.05.085

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Wang Q, Liu Y et al (2013) Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design. J Food Sci 78:M258–M263. https://doi.org/10.1111/1750-3841.12040

    Article  CAS  PubMed  Google Scholar 

  49. Lou Z, Wang H, Zhu S et al (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76:M398–M403. https://doi.org/10.1111/j.1750-3841.2011.02213.x

    Article  CAS  PubMed  Google Scholar 

  50. Fan H, Chen J, Lv H et al (2017) Isolation and identification of terpenoids from chicory roots and their inhibitory activities against yeast α-glucosidase. Eur Food Res Technol 243:1009–1017. https://doi.org/10.1007/s00217-016-2810-1

    Article  CAS  Google Scholar 

  51. Jancic D, Todorovic V, Sircelj H, et al (2017) Biologically active compounds and antioxidant capacity of Cichorium intybus L. leaves from Montenegro. Ital J Food Sci 29:627–643

    CAS  Google Scholar 

  52. Epure A, Pârvu AE, Vlase L et al (2021) phytochemical profile, antioxidant, cardioprotective and nephroprotective activity of Romanian chicory extract. Plants 10:64. https://doi.org/10.3390/plants10010064

    Article  CAS  Google Scholar 

  53. Das S, Vasudeva N, Sharma S (2016) Cichorium intybus: a concise report on its ethnomedicinal, botanical, and phytopharmacological aspects. Drug Dev Ther. https://doi.org/10.4103/2394-6555.180157

    Article  Google Scholar 

  54. Nwafor IC, Shale K, Achilonu MC (2017) Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. Sci World J. https://doi.org/10.1155/2017/7343928

    Article  Google Scholar 

  55. WenYing G, Li J (2012) Chicory seeds: a potential source of nutrition for food and feed. J Anim Plant Sci 13:1736–1746

    Google Scholar 

  56. Nørbæk R, Nielsen K, Kondo T (2002) Anthocyanins from flowers of Cichorium intybus. Phytochemistry 60:357–359. https://doi.org/10.1016/S0031-9422(02)00055-9

    Article  PubMed  Google Scholar 

  57. Tousch D, Lajoix A-D, Hosy E et al (2008) Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun 377:131–135. https://doi.org/10.1016/j.bbrc.2008.09.088

    Article  CAS  PubMed  Google Scholar 

  58. Jangra SS, Madan VK (2018) Proximate, mineral and chemical composition of different parts of chicory (Cichorium intybus L.). J Pharmacogn Phytochem 7:3311–3315

    CAS  Google Scholar 

  59. Leclercq E (1984) Determination of lactucin in roots of chicory (Cichorium intybus L.) by high-performance liquid chromatography. J Chromatogr A 283:441–444. https://doi.org/10.1016/S0021-9673(00)96288-5

    Article  CAS  Google Scholar 

  60. Pyrek JS (1985) Sesquiterpene lactones of Cichorium intybus and Leontodon autumnalis. Phytochemistry 24:186–188. https://doi.org/10.1016/S0031-9422(00)80838-9

    Article  Google Scholar 

  61. Cavin C, Delannoy M, Malnoe A et al (2005) Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochem Biophys Res Commun 327:742–749. https://doi.org/10.1016/j.bbrc.2004.12.061

    Article  CAS  PubMed  Google Scholar 

  62. Matos MS, Anastácio JD, Allwood JW et al (2020) Assessing the intestinal permeability and anti-inflammatory potential of sesquiterpene lactones from chicory. Nutrients 12:3547. https://doi.org/10.3390/nu12113547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kisiel W, Zielińska K (2001) Guaianolides from Cichorium intybus and structure revision of Cichorium sesquiterpene lactones. Phytochemistry 57:523–527. https://doi.org/10.1016/S0031-9422(01)00072-3

  64. Ren Y, Zhou Y, Chen X, Ye Y (2005) Discovery, structural determination and anticancer activities of lactucinlike guaianolides. Lett Drug Des Discov 2:444–450. https://doi.org/10.2174/1570180054771581

    Article  CAS  Google Scholar 

  65. Rees SB, Harborne JB (1985) The role of sesquiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24:2225–2231. https://doi.org/10.1016/S0031-9422(00)83015-0

    Article  CAS  Google Scholar 

  66. Bischoff TA, Kelley CJ, Karchesy Y et al (2004) Antimalarial activity of lactucin and lactucopicrin: sesquiterpene lactones isolated from Cichorium intybus L. J Ethnopharmacol 95:455–457. https://doi.org/10.1016/j.jep.2004.06.031Get

    Article  CAS  PubMed  Google Scholar 

  67. Malik B, Pirzadah TB, Tahir I et al (2016) Phytochemical studies on Cichorium intybus L. (CHICORY) from Kashmir Himalaya using GC-MS. J Pharm Res 10:715–726

    CAS  Google Scholar 

  68. Ravindran R, Chithra ND, Deepa PE et al (2017) In vitro effects of caffeic acid, nortriptyline, precocene I and quercetin against Rhipicephalus annulatus (Acari: Ixodidae). Exp Appl Acarol 71:183–193. https://doi.org/10.1007/s10493-017-0105-2

    Article  CAS  PubMed  Google Scholar 

  69. Li G-Y, Zheng Y-X, Sun F-Z et al (2015) In silico analysis and experimental validation of active compounds from Cichorium intybus L. ameliorating liver injury. Int J Mol Sci 16:22190–22204. https://doi.org/10.3390/ijms160922190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV (2011) Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 349:11–19. https://doi.org/10.1007/s11010-010-0655-7

    Article  CAS  Google Scholar 

  71. Pragasam SJ, Venkatesan V, Rasool M (2013) Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 36:169–176. https://doi.org/10.1007/s10753-012-9532-8

    Article  CAS  PubMed  Google Scholar 

  72. Krebsky EO, Geuns JMC, De Proft M (1999) Polyamines and sterols in Cichorium heads. Phytochemistry 50:549–553. https://doi.org/10.1016/S0031-9422(98)00555-X

    Article  CAS  Google Scholar 

  73. Bridle P, Loeffler RST, Timberlake CF, Self R (1984) Cyanidin 3-malonylglucoside in Cichorium intybus. Phytochemistry 23:2968–2969. https://doi.org/10.1016/0031-9422(84)83058-7

    Article  CAS  Google Scholar 

  74. Mulabagal V, Wang H, Ngouajio M, Nair MG (2009) Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties. Eur Food Res Technol 230:47–53. https://doi.org/10.1007/s00217-009-1144-7

    Article  CAS  Google Scholar 

  75. Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107. https://doi.org/10.1016/j.foodchem.2012.11.139

    Article  CAS  PubMed  Google Scholar 

  76. Zhang S, Zhao M, Bai L et al (2006) Bioactive guaianolides from siyekucai (Ixeris chinensis). J Nat Prod 69:1425–1428. https://doi.org/10.1021/np068015j

    Article  CAS  PubMed  Google Scholar 

  77. Papetti A, Mascherpa D, Carazzone C et al (2013) Identification of organic acids in Cichorium intybus inhibiting virulence-related properties of oral pathogenic bacteria. Food Chem 138:1706–1712. https://doi.org/10.1016/j.foodchem.2012.10.148

    Article  CAS  PubMed  Google Scholar 

  78. Satmbekova D, Srivedavyasasri R, Orazbekov Y et al (2018) Chemical and biological studies on Cichorium intybus L. Nat Prod Res 32:1343–1347. https://doi.org/10.1080/14786419.2017.1343319

    Article  CAS  PubMed  Google Scholar 

  79. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucl Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. März AM, Fabian A-K, Kozany C et al (2013) Large FK506-binding proteins shape the pharmacology of rapamycin. Mol Cell Biol 33:1357–1367. https://doi.org/10.1128/MCB.00678-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https://doi.org/10.1093/nar/gkaa971

    Article  CAS  PubMed  Google Scholar 

  83. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  84. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:1–14. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  85. Chemaxon (2022) Chemicalize was used for [prediction of microspecies distribution]. https://chemicalize.com/app/calculation

  86. Harding AP, Wedge DC, Popelier PLA (2009) p K a prediction from “quantum chemical topology” descriptors. J Chem Inf Model 49:1914–1924. https://doi.org/10.1021/ci900172h

    Article  CAS  PubMed  Google Scholar 

  87. Settimo L, Bellman K, Knegtel R (2014) Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm Res 31:1082–1095. https://doi.org/10.1007/s11095-013-1232-z

    Article  CAS  PubMed  Google Scholar 

  88. Rasul HO, Aziz BK, Ghafour DD, Kivrak A (2022) In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J Mol Model 28:1–18. https://doi.org/10.1007/s00894-021-05010-w

    Article  CAS  Google Scholar 

  89. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 40:82–92

  90. Dong J, Wang N-N, Yao Z-J et al (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform 10:1–11. https://doi.org/10.1186/s13321-018-0283-x

    Article  CAS  Google Scholar 

  91. Xiong G, Wu Z, Yi J, et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucl Acids Res. https://doi.org/10.1093/nar/gkab255

  92. Molinspiration Cheminformatics. In: Nov. ulica. https://www.molinspiration.com/

  93. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  94. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. https://doi.org/10.1016/S1056-8719(00)00107-6

    Article  CAS  PubMed  Google Scholar 

  95. Zhu H, Martin TM, Ye L et al (2009) Quantitative structure—activity relationship modeling of rat acute toxicity by oral exposure. Chem Res Toxicol 22:1913–1921. https://doi.org/10.1021/tx900189p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Release S (2017) 3: Desmond molecular dynamics system, DE Shaw research, New York, NY, 2017. Maest Interoperability Tools, Schrödinger, New York

  97. Hodgson J (2001) ADMET—turning chemicals into drugs. Nat Biotechnol 19:722–726. https://doi.org/10.1038/90761

    Article  CAS  PubMed  Google Scholar 

  98. Beig A, Agbaria R, Dahan A (2013) Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS ONE 8:e68237. https://doi.org/10.1371/journal.pone.0068237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsaioun K, Kates SA (2011) ADMET for medicinal chemists: a practical guide. Wiley

    Book  Google Scholar 

  100. Wu Z, Lei T, Shen C et al (2019) ADMET evaluation in drug discovery. 19. Reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches. J Chem Inf Model 59:4587–4601. https://doi.org/10.1021/acs.jcim.9b00801

    Article  CAS  PubMed  Google Scholar 

  101. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE 10:e0119264. https://doi.org/10.1371/journal.pone.0119264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alnajjar R, Mostafa A, Kandeil A, Al-Karmalawy AA (2020) Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon 6:e05641. https://doi.org/10.1016/j.heliyon.2020.e05641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Charmo University and Komar University of Science and Technology for their ongoing assistance and facilities in carrying out this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Hezha O. Rasul contributed to conceptualization, methodology, software, data curation, and writing. Bakhtyar K. Aziz contributed to supervision, software, and validation Dlzar D. Ghafour contributed to writing, review and editing, visualization, resources. Arif Kivrak contributed to validation, writing–review and editing.

Corresponding author

Correspondence to Hezha O. Rasul.

Ethics declarations

Conflict of interest

There are no conflicts of interest declared by the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasul, H.O., Aziz, B.K., Ghafour, D.D. et al. Discovery of potential mTOR inhibitors from Cichorium intybus to find new candidate drugs targeting the pathological protein related to the breast cancer: an integrated computational approach. Mol Divers 27, 1141–1162 (2023). https://doi.org/10.1007/s11030-022-10475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10475-9

Keywords

Navigation