Skip to main content
Log in

Identification of potential matrix metalloproteinase-2 inhibitors from natural products through advanced machine learning-based cheminformatics approaches

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase-2 (MMP-2) is capable of degrading Collage TypeIV in the vascular basement membrane and extracellular matrix. Studies have shown that MMP-2 is tightly associated with the biological behavior of malignant tumors. Therefore, the identification of inhibitors targeting MMP-2 could be effective in treating the disease by maintaining extracellular matrix homeostasis. In the pharmaceutical and biomedical fields, many computational tools are widely used, which improve the efficiency of the whole process to some extent. Apart from the conventional cheminformatics approaches (e.g., pharmacophore model and molecular docking), virtual screening strategies based on machine learning also have promising applications. In this study, we collected 2871 compound activity data against MMP-2 from the ChEMBL database and divided the training and test sets in a 3:1 ratio. Four machine learning algorithms were then selected to construct the classification models, and the best-performing model, i.e., the stacking-based fusion model with the highest AUC value in both training and test datasets, was used for the virtual screening of ZINC database. Next, we screened 17 potential MMP-2 inhibitors from the results predicted by the machine learning model via ADME/T analysis. The interactions between these compounds and the target protein were explored through molecular docking calculations, and the results showed that ZINC712249, ZINC4270723, and ZINC15858504 had lower binding free energies than the co-crystal ligand. To further examine the binding stability of the complexes, we performed molecular dynamics simulations and finally identified these three hits as the most promising natural products for MMP-2 inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Verma RP, Hansch C (2007) Matrix metalloproteinases (MMPs): chemical–biological functions and (Q)SARs. Bioorgan Med Chem 15:2223–2268. https://doi.org/10.1016/j.bmc.2007.01.011

    Article  CAS  Google Scholar 

  2. Cui N, Hu M, Khalil RA (2017) Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl 147:1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005

    Article  CAS  Google Scholar 

  3. Nissinen L, Kähäri V (2014) Matrix metalloproteinases in inflammation. BBA-Gen Subjects 1840:2571–2580. https://doi.org/10.1016/j.bbagen.2014.03.007

    Article  CAS  Google Scholar 

  4. Mezentsev A, Nikolaev A, Bruskin S (2014) Matrix metalloproteinases and their role in psoriasis. Genes-Basel 540:1–10. https://doi.org/10.1016/j.gene.2014.01.068

    Article  CAS  Google Scholar 

  5. Knapinska AM, Estrada C, Fields GB (2017) The roles of matrix metalloproteinases in pancreatic cancer. Prog Mol Biol Transl 148:339–354. https://doi.org/10.1016/bs.pmbts.2017.03.004

    Article  CAS  Google Scholar 

  6. Alg VS, Ke X, Grieve J et al (2018) Association of functional MMP-2 gene variant with intracranial aneurysms: case-control genetic association study and meta-analysis. Brit J Neurosurg 32:255–259. https://doi.org/10.1080/02688697.2018.1427213

    Article  Google Scholar 

  7. Ulrich D, Hrynyschyn K, Pallua N (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in sera and tissue of patients with Dupuytren’ s disease. Plast Reconstr Surg 112:1279–1286. https://doi.org/10.1097/01.PRS.0000081462.40448.49

    Article  PubMed  Google Scholar 

  8. Amin SA, Adhikari N, Jha T (2017) Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol Res 122:8–19. https://doi.org/10.1016/j.phrs.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  9. Huang C, Teng Y, Lu F et al (2017) β-mangostin suppresses human hepatocellular carcinoma cell invasion through inhibition of MMP-2 and MMP-9 expression and activating the ERK and JNK pathways. Environ Toxicol 32:2360–2370. https://doi.org/10.1002/tox.22449

    Article  CAS  PubMed  Google Scholar 

  10. Newman DJ (2020) Modern traditional Chinese medicine: identifying, defining and usage of TCM components. Adv Pharmacol 87:113–158. https://doi.org/10.1016/bs.apha.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  11. Liu S, Xu X, Xu J et al (2017) Multi-drug resistant uropathogenic Escherichia coli and its treatment by Chinese medicine. Chin J Integr Med 23:763–769. https://doi.org/10.1007/s11655-016-2738-0

    Article  PubMed  Google Scholar 

  12. Leuci R, Brunetti L, Poliseno V et al (2021) Natural compounds for the prevention and treatment of cardiovascular and neurodegenerative diseases. Foods 10:29. https://doi.org/10.3390/foods10010029

    Article  CAS  Google Scholar 

  13. Bian Y, Feng Z, Yang P et al (2017) integrated in silico fragment-based drug design: case study with allosteric modulators on metabotropic glutamate receptor 5. AAPS J 19:1235–1248. https://doi.org/10.1208/s12248-017-0093-5

    Article  CAS  PubMed  Google Scholar 

  14. Herrera-Acevedo C, Perdomo-Madrigal C, Herrera-Acevedo K et al (2021) Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database. Mol Divers 25:1553–1568. https://doi.org/10.1007/s11030-021-10245-z

    Article  CAS  PubMed  Google Scholar 

  15. Islam MA, Rallabandi VPS, Mohammed S et al (2021) Screening of β1- and β2-adrenergic receptor modulators through advanced pharmacoinformatics and machine learning approaches. Int J Mol Sci 22:11191. https://doi.org/10.3390/ijms222011191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernández-de Gortari E, García-Jacas CR, Martinez-Mayorga K et al (2017) Database fingerprint (DFP): an approach to represent molecular databases. J Cheminform 9:9. https://doi.org/10.1186/s13321-017-0195-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin H, Han L, Yap C et al (2007) Prediction of factor Xa inhibitors by machine learning methods. J Mol Graph 26:505–518. https://doi.org/10.1016/j.jmgm.2007.03.003

    Article  CAS  Google Scholar 

  18. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. https://doi.org/10.5555/1953048.2078195

    Article  Google Scholar 

  19. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  20. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salentin S, Schreiber S, Haupt VJ et al (2015) PLIP: fully automated protein–ligand interaction profiler. Nucl Acids Res 43:W443–W447. https://doi.org/10.1093/nar/gkv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan S, Chan HCS, Hu Z (2017) Using PyMOL as a platform for computational drug design. Wiley interdisciplinary reviews. Wires Comput Mol Sci. https://doi.org/10.1002/wcms.1298

  23. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J Mol Graph Model 25:755–766. https://doi.org/10.1016/j.jmgm.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  25. Mak KK, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discov Today 24:773–780. https://doi.org/10.1016/j.drudis.2018.11.014

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by Sub-project of the National Ministry of Health Major New Drug Creation Science and Technology Major Project (No. 2014ZX09509001001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruoqi Yang or Bin Yan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 11629 kb)

Supplementary file2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Zhao, G., Cheng, B. et al. Identification of potential matrix metalloproteinase-2 inhibitors from natural products through advanced machine learning-based cheminformatics approaches. Mol Divers 27, 1053–1066 (2023). https://doi.org/10.1007/s11030-022-10467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10467-9

Keywords

Navigation