Skip to main content

Advertisement

Log in

Classification models and SAR analysis on HDAC1 inhibitors using machine learning methods

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Histone deacetylase (HDAC) 1, a member of the histone deacetylases family, plays a pivotal role in various tumors. In this study, we collected 7313 human HDAC1 inhibitors with bioactivities to form a dataset. Then, the dataset was divided into a training set and a test set using two splitting methods: (1) Kohonen’s self-organizing map and (2) random splitting. The molecular structures were represented by MACCS fingerprints, RDKit fingerprints, topological torsions fingerprints and ECFP4 fingerprints. A total of 80 classification models were built by using five machine learning methods, including decision tree (DT), random forest, support vector machine, eXtreme Gradient Boosting and deep neural network. Model 15A_2 built by the XGBoost algorithm based on ECFP4 fingerprints showed the best performance, with an accuracy of 88.08% and an MCC value of 0.76 on the test set. Finally, we clustered the 7313 HDAC1 inhibitors into 31 subsets, and the substructural features in each subset were investigated. Moreover, using DT algorithm we analyzed the structure–activity relationship of HDAC1 inhibitors. It may conclude that some substructures have a significant effect on high activity, such as N-(2-amino-phenyl)-benzamide, benzimidazole, AR-42 analogues, hydroxamic acid with a middle chain alkyl and 4-aryl imidazole with a midchain of alkyl whose α carbon is chiral.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.

Similar content being viewed by others

References

  1. Liu L, Dong L, Bourguet E et al (2021) Targeting class Iia HDACs: insights from phenotypes and inhibitors. Curr Med Chem 28(42):8628–8672. https://doi.org/10.2174/0929867328666210629160647

    Article  CAS  PubMed  Google Scholar 

  2. Pojani E, Barlocco D (2021) Romidepsin (FK228), A histone deacetylase inhibitor and its analogues in cancer chemotherapy. Curr Med Chem 28(7):1290–1303. https://doi.org/10.2174/0929867327666200203113926

    Article  CAS  PubMed  Google Scholar 

  3. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318. https://doi.org/10.1038/sj.onc.1210599

    Article  CAS  PubMed  Google Scholar 

  4. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39. https://doi.org/10.1172/JCI69738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31. https://doi.org/10.1016/j.jmb.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  6. Zhang B, Wang Y, Pang X (2012) Enhanced radiosensitivity of EC109 cells by inhibition of HDAC1 expression. Med Oncol 29(1):340–380. https://doi.org/10.1007/s12032-010-9559-3

    Article  CAS  PubMed  Google Scholar 

  7. Halkidou K, Gaughan L, Cook S et al (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177–189. https://doi.org/10.1002/pros.20022

    Article  CAS  PubMed  Google Scholar 

  8. Choi JH, Kwon HJ, Yoon BI et al (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Caner Res 92(12):1300–1304

    Article  CAS  Google Scholar 

  9. Zhang Z, Yamashita H, Toyama T et al (2005) Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat 94(1):11–16. https://doi.org/10.1007/s10549-005-6001-1

    Article  CAS  PubMed  Google Scholar 

  10. Ozawa A, Tanji N, Kikugawa T et al (2010) Inhibition of bladder tumour growth by histone deacetylase inhibitor. BJU Int 105(8):1181–1186. https://doi.org/10.1111/j.1464-410X.2009.08795.x

    Article  CAS  PubMed  Google Scholar 

  11. Duvic M, Vu J (2007) Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs 16(7):1111–1120. https://doi.org/10.1517/13543784.16.7.1111

    Article  CAS  PubMed  Google Scholar 

  12. VanderMolen KM, McCulloch W, Pearce CJ et al (2011) Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot (Tokyo) 64(8):525–531. https://doi.org/10.1038/ja.2011.35

    Article  CAS  PubMed  Google Scholar 

  13. Lee HZ, Kwitkowski VE, Del Valle PL et al (2015) FDA approval: belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin Cancer Res 21(12):2666–2670. https://doi.org/10.1158/1078-0432.CCR-14-3119

    Article  CAS  PubMed  Google Scholar 

  14. Raedler LA (2016) Farydak (Panobinostat): First HDAC Inhibitor approved for patients with relapsed multiple myeloma. American Health Drug Benefits 9 (Special):84–87

  15. Shi Y, Jia B, Xu W et al (2017) Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China. J Hematol Oncol 10(1):69. https://doi.org/10.1186/s13045-017-0439-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Remiszewski SW (2003) The Discovery of NVP-LAQ824: From Concept to Clinic. Curr Med Chem 10:2393–2402

    Article  CAS  PubMed  Google Scholar 

  17. Seki M, LaCanna R, Powers JC et al (2016) Class i histone deacetylase inhibition for the treatment of sustained atrial fibrillation. J Pharmacol Exp Ther 358(3):441–449. https://doi.org/10.1124/jpet.116.234591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Knipstein J, Gore L (2011) Entinostat for treatment of solid tumors and hematologic malignancies. Drug Evaluation 20(10):1455–1467. https://doi.org/10.1517/13543784.2011.613822

    Article  CAS  Google Scholar 

  19. Boumber Y, Younes A, Garcia-Manero G (2011) Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor. Expert Opin Investig Drugs 20(6):823–829. https://doi.org/10.1517/13543784.2011.577737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tng J, Lim J, Wu KC et al (2020) Achiral derivatives of hydroxamate AR-42 potently inhibit class I HDAC enzymes and cancer cell proliferation. J Med Chem 63(11):5956–5971. https://doi.org/10.1021/acs.jmedchem.0c00230

    Article  CAS  PubMed  Google Scholar 

  21. Lee H, Chang C, Su C et al (2016) 2-(Phenylsulfonyl)quinoline N -hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur J Med Chem 122:92–101. https://doi.org/10.1016/j.ejmech.2016.06.023

    Article  CAS  PubMed  Google Scholar 

  22. Salvador LA, Park H, Al-Awadhi FH et al (2014) Modulation of activity profiles for largazole-based HDAC inhibitors through alteration of prodrug properties. ACS Med Chem Lett 5(8):905–910. https://doi.org/10.1021/ml500170r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mehndiratta S, Wang R, Huang H et al (2017) 4-Indolyl- N -hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur J Med Chem 134:13–23. https://doi.org/10.1016/j.ejmech.2017.03.079

    Article  CAS  PubMed  Google Scholar 

  24. Xie R, Li Y, Tang P et al (2018) Design, synthesis and biological evaluation of novel 2-aminobenzamides containing dithiocarbamate moiety as histone deacetylase inhibitors and potent antitumor agents. Eur J Med Chem 143:320–333. https://doi.org/10.1016/j.ejmech.2017.08.041

    Article  CAS  PubMed  Google Scholar 

  25. Jones P, Altamura S, De Francesco R et al (2008) Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med Chem Lett 18(6):1814–1819. https://doi.org/10.1016/j.bmcl.2008.02.025

    Article  CAS  PubMed  Google Scholar 

  26. Dong G, Chen W, Wang X et al (2017) Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) and Histone deacetylase (HDAC) dual inhibitors. J Med Chem 60(19):7965–7983. https://doi.org/10.1021/acs.jmedchem.7b00467

    Article  CAS  PubMed  Google Scholar 

  27. Estiu G, West N, Mazitschek R et al (2010) On the inhibition of histone deacetylase 8. Bioorg Med Chem 18(11):4103–4110. https://doi.org/10.1016/j.bmc.2010.03.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marson CM, Matthews CJ, Atkinson SJ et al (2015) Potent and selective inhibitors of histone deacetylase-3 containing chiral oxazoline capping groups and an-(2-aminophenyl)-benzamide binding unit. J Med Chem 58(17):6803–6818. https://doi.org/10.1021/acs.jmedchem.5b00545

    Article  CAS  PubMed  Google Scholar 

  29. Tian Y, Zhang S, Yin H et al (2020) Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods. Chemom Intell Lab Syst 196:103888. https://doi.org/10.1016/j.chemolab.2019.103888

    Article  CAS  Google Scholar 

  30. Guo Y, Xiao J, Guo Z et al (2005) Exploration of a binding mode of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg Med Chem 13(18):5424–5434. https://doi.org/10.1016/j.bmc.2005.05.016

    Article  CAS  PubMed  Google Scholar 

  31. Tang H, Wang X, S, Huang X, P, et al (2009) Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model 49(2):461–476. https://doi.org/10.1021/ci800366f

    Article  CAS  PubMed  Google Scholar 

  32. Abdizadeh T, Ghodsi R, Hadizadeh F (2017) 3D-QSAR (CoMFA, CoMSIA) and molecular docking studies on histone deacetylase 1 selective inhibitors. Recent Pat Anti Cancer Drug Dis 12(4):365–383. https://doi.org/10.2174/1574892812666170508125927

    Article  CAS  Google Scholar 

  33. Myles AJ, Feudale RN, Liu Y et al (2004) An introduction to decision tree modeling. J Chemom 18(6):275–285. https://doi.org/10.1002/cem.873

    Article  CAS  Google Scholar 

  34. Schonlau M, Zou RY (2020) The random forest algorithm for statistical learning. Stata J Promot Commun Stat Stata 20(1):3–29. https://doi.org/10.1177/1536867x20909688

    Article  Google Scholar 

  35. Harrington PdB (2015) Support vector machine classification trees. Anal Chem 87(21):11065–11071. https://doi.org/10.1021/acs.analchem.5b03113

    Article  CAS  Google Scholar 

  36. Sheridan RP, Wang WM, Liaw A et al (2016) Extreme gradient boosting as a method for quantitative structure-activity relationships. J Chem Inf Model 56(12):2353–2360. https://doi.org/10.1021/acs.jcim.6b00591

    Article  CAS  PubMed  Google Scholar 

  37. Ma J, Sheridan RP, Liaw A et al (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55(2):263–274. https://doi.org/10.1021/ci500747n

    Article  CAS  PubMed  Google Scholar 

  38. ChEMBL. https://www.ebi.ac.uk/chembl/. Accessed May 2022

  39. Reaxys. https://www.reaxys.com. Accessed May 2022

  40. SONNIA. https://www.mn-am.com/products/sonnia. Accessed May 2022

  41. Zhang S, Li Y, Qin Z et al (2019) SAR study on inhibitors of GIIA secreted phospholipase A2 using machine learning methods. Chem Biol Drug Des 93(5):666–684. https://doi.org/10.1111/cbdd.13470

    Article  CAS  PubMed  Google Scholar 

  42. RDKit. http://www.rdkit.org. Accessed May 2022

  43. scikit-learn. http://scikit-learn.org/stable/. Accessed May 2022

  44. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  45. Xavier MM, Heck GS, Avila MBD et al (2016) SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screening 19(10):801–812. https://doi.org/10.2174/1386207319666160927111347

    Article  CAS  Google Scholar 

  46. Bitencourt-Ferreira G, AzevedoJr WFd (2019) machine learning to predict binding affinity. Methods Mol Biol 2053:251–273. https://doi.org/10.1007/978-1-4939-9752-7_16

    Article  CAS  PubMed  Google Scholar 

  47. XGBoost. https://pypi.python.org/pypi/xgboost/. Accessed May 2022

  48. Keras. https://keras.io/. Accessed May 2022

  49. Polishchuk P (2017) Interpretation of quantitative structure-activity relationship models: past, present, and future. J Chem Inf Model 57(11):2618–2639. https://doi.org/10.1021/acs.jcim.7b00274

    Article  CAS  PubMed  Google Scholar 

  50. Qin Z, Xi Y, Zhang S et al (2019) Classification of cyclooxygenase-2 inhibitors using support vector machine and random forest methods. J Chem Inf Model 59(5):1988–2008. https://doi.org/10.1021/acs.jcim.8b00876

    Article  CAS  PubMed  Google Scholar 

  51. Kong Y, Bender A, Yan A (2018) Identification of novel aurora kinase a (aurka) inhibitors via hierarchical ligand-based virtual screening. J Chem Inf Model 58(1):36–47. https://doi.org/10.1021/acs.jcim.7b00300

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Gotoh O (2009) Accurate molecular classification of cancer using simple rules. BMC Med Genomics 2:64. https://doi.org/10.1186/1755-8794-2-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rahman R, Matlock K, Ghosh S et al (2017) Heterogeneity aware random forest for drug sensitivity prediction. Sci Rep 7(1):11347. https://doi.org/10.1038/s41598-017-11665-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794. Doi: https://doi.org/10.1145/2939672.2939785

  55. Tu G, Qin Z, Huo D et al (2020) Fingerprint-based computational models of 5-lipo-oxygenase activating protein inhibitors: Activity prediction and structure clustering. Chem Biol Drug Des 96(3):931–947. https://doi.org/10.1111/cbdd.13657

    Article  CAS  PubMed  Google Scholar 

  56. Walsh I, Fishman D, Garcia-Gasulla D et al (2021) DOME: recommendations for supervised machine learning validation in biology. Nat Methods 18(10):1122–1127. https://doi.org/10.1038/s41592-021-01205-4

    Article  CAS  PubMed  Google Scholar 

  57. Lvd M, Hinton G (2008) Viualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  58. Kanungo T, Mount DM, Netantahu NS et al (2002) An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892. https://doi.org/10.1109/TPAMI.2002.1017616

    Article  Google Scholar 

  59. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

  60. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  61. Wang H, Qin Z, Yan A (2021) Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms. Mol Divers 25(3):1597–1616. https://doi.org/10.1007/s11030-020-10165-4

    Article  CAS  PubMed  Google Scholar 

  62. Murahari S, Jalkanen AL, Kulp SK et al (2017) Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis. BMC Cancer 17(1):17–67. https://doi.org/10.1186/s12885-017-3046-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21675010), and “Chemical Grid Project” of Beijing University of Chemical Technology. We thank Molecular Networks GmbH, Erlangen, Germany for providing the programs CORINA Symphony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixia Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Tian, Y., Yang, Z. et al. Classification models and SAR analysis on HDAC1 inhibitors using machine learning methods. Mol Divers 27, 1037–1051 (2023). https://doi.org/10.1007/s11030-022-10466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10466-w

Keywords

Navigation