Skip to main content

Advertisement

Log in

Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Lichen secondary metabolites are well explored medicinal agents with diverse pharmacological properties. One of the important antibiotic lichen secondary metabolites is usnic acid. Its diverse medicinal profiles prompted us to explore it as a potential antitubercular molecule. Towards this direction, continuing our efforts on the discovery and development of new analogs with potent antitubercular properties we designed, synthesized, and evaluated a set of 37 usnic acid enaminone-coupled aryl-n-hexanamides (3–39). The study yielded a 3,4-dimethoxyphenyl compound (13, 5.3 µM) as the most active anti-TB molecule. The docking studies were performed on 7 different enzymes to better understand the binding modes, where it was observed that compound 13 bound strongly with glucose dehydrogenase (Gscore: − 9.03). Further antibacterial investigations revealed compound 2 with potent inhibition on Salmonella typhi and Bacillus subtilis (MIC 3 µM) and MIC values of 7 and 14 µM on Streptococcus mutans and Escherichia coli respectively. Compound 19 (3-F-5-CF3-phenyl) displayed encouraging antibacterial profiles against E. coli, S. typhi and S. mutans with MIC values of 10 µM respectively. Interestingly, compound 20 (2,6-difluorophenyl) also displayed good antibacterial activity against E. coli with an MIC value of 6 µM. These encouraging pharmacological results will help for better designing and developing usnic acid-based semi-synthetic derivatives as potential antimicrobial agents.

Graphical abstract

A set of 37 new usnic acid enaminone-coupled aryl-n-hexanamides were synthesized and evaluated as potential antimicrobial agents. Compound 13 was identified as the most active antitubercular molecule. 13 was further docked against 7 different enzymes of tuberculosis. The molecule displayed maximum binding energy with the enzyme Glucose dehydrogenase (Gscore: − 9.03), indicating that these hexanamides possibly act by inhibiting the glucose metabolic pathway of the bacterium. Surprisingly, the intermediate hexanoic acid 2 was identified as potent antibacterial agent, acting on both gram-positive and gram-negative bacterial strains (3–14 μM). The active compounds may be subjected to structural iterations to develop further leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5.
Fig. 6

Similar content being viewed by others

Data availability

The supplementary information provides copies 1H, 13C-NMR and HRMS spectra of the final molecules.

References

  1. Dyrkheeva N, Luzina O, Filimonov A, Zakharova O, Ilina E, Zakharenko A, Kuprushkin M, Nilov D, Gushchina I, Svedas V, Salakhutdinov N, Lavrik O (2019) Inhibitory effect of new semisynthetic usnic acid derivatives on human tyrosyl-DNA phosphodiesterase 1. Planta Med 85:103–111. https://doi.org/10.1055/a-0681-7069

    Article  CAS  PubMed  Google Scholar 

  2. Dyrkheeva NS, Filimonov AS, Luzina OA, Zakharenko AL, Ilina ES, Malakhova AA, Medvedev SP, Reynisson J, Volcho KP, Zakian SM, Salakhutdinov NF, Lavrik OI (2021) New hybrid compounds combining fragments of usnic acid and monoterpenoids for effective tyrosyl-DNA phosphodiesterase 1 inhibition. Biomolecules 11:973–975. https://doi.org/10.3390/biom11070973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zakharenko AL, Luzina OA, Sokolov DN, Kaledin VI, Nikolin VP, Popova NA, Patel J, Zakharova OD, Chepanova AA, Zafar A, Reynisson J, Leung E, Leung IKH, Volcho KP, Salakhutdinov NF, Lavrik OI (2019) Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topotecan on in vivo tumor models. Eur J Med Chem 161:581–593. https://doi.org/10.1016/j.ejmech.2018.10.055

    Article  CAS  PubMed  Google Scholar 

  4. Filimonov AS, Chepanova AA, Luzina OA, Zakharenko AL, Zakharova OD, Ilina ES, Dyrkheeva NS, Kuprushkin MS, Kolotaev AV, Khachatryan DS, Patel J, Leung IKH, Chand R, Ayine-Tora DM, Reynisson J, Volcho KP, Salakhutdinov NF, Lavrik OI (2019) New hydrazinothiazole derivatives of usnic acid as potent Tdp1 inhibitor. Molecules 24:3711–3745. https://doi.org/10.3390/molecules24203711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luzina O, Filimonov A, Zakharenko A, Chepanova A, Zakharova O, Ilina E, Dyrkheeva N, Likhatskaya G, Salakhutdinov N, Lavrik O (2020) Usnic acid conjugates with monoterpenoids as potent tyrosyl-DNA phosphodiesterase 1 inhibitors. J Nat Prod 83:2320–2329. https://doi.org/10.1021/acs.jnatprod.9b01089

    Article  CAS  PubMed  Google Scholar 

  6. Pyrczak-Felczykowska A, Narlawar R, Pawlik A, Guzow-Krzemińska B, Artymiuk D, Hać A, Ryś K, Rendina LM, Reekie TA, Herman-Antosiewicz A, Kassiou M (2019) Synthesis of usnic acid derivatives and evaluation of their antiproliferative activity against cancer cells. J Nat Prod 82:1768–1778. https://doi.org/10.1021/acs.jnatprod.8b00980

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Zang J, Huang M, Guan L, Xing K, Zhang J, Liu D, Zhao L (2019) Discovery of novel (+)-usnic acid derivatives as potential anti-leukemia agents with pan-pim kinases inhibitory activity. Bioorganic Chem 89:102971–102973. https://doi.org/10.1016/j.bioorg.2019.102971

    Article  CAS  Google Scholar 

  8. Samuelsen L, Hansen PE, Vang O (2020) Derivatives of usnic acid cause cytostatic effect in Caco-2 cells. Nat Prod Res. https://doi.org/10.1080/14786419.2020.1756796

    Article  PubMed  Google Scholar 

  9. Mallavadhani UV, Vanga NR, Rao KB, Jain N (2020) Synthesis and antiproliferative activity of novel (+)-usnic acid analogues. J Asian Nat Prod Res 22:562–577. https://doi.org/10.1080/10286020.2019.1603220

    Article  CAS  Google Scholar 

  10. Victor K, Boris L, Athina G, Anthi P, Marija S, Marina K, Oliver R, Marina S (2018) Design, synthesis, and antimicrobial activity of usnic acid derivatives. Med Chem Commun 9:870–882. https://doi.org/10.1039/C8MD00076J

    Article  CAS  Google Scholar 

  11. Shi C-J, Peng W, Zhao J-H, Yang H-L, Qu L-L, Wang C, Kong L-Y, Wang X-B (2020) Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors. Eur J Med Chem 187:111961. https://doi.org/10.1016/j.ejmech.2019.111961

    Article  CAS  PubMed  Google Scholar 

  12. Fogel N (2015) Tuberculosis: a disease without boundaries. Tuberculosis 95:527–531. https://doi.org/10.1016/j.tube.2015.05.017

    Article  PubMed  Google Scholar 

  13. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, Ginsberg A, Swaminathan S, Spigelman M, Getahun H, Menzies D, Raviglione M (2016) Tuberculosis. Nat Rev Dis Primers 2:16706. https://doi.org/10.1038/nrdp.2016.76

    Article  Google Scholar 

  14. Global Tuberculosis Report (2020) Executive summary. World Health Organization https://apps.who.int/iris/bitstream/handle/10665/337538/9789240016095-eng.pdf

  15. India TB Report (2021) Central TB division, India

  16. Griffin JD, Ellman L (1978) Epsilon-aminocaproic acid (EACA). Semin Thromb Hemost 5:27–40. https://doi.org/10.1055/s-0028-1087143

    Article  CAS  PubMed  Google Scholar 

  17. Anandan SK, Ward JS, Brokx RD, Bray MR, Patel DV, Xiao XX (2005) Mercaptoamide-based non-hydroxamic acid type histone deacetylase inhibitors. Bioorganic Med Chem Lett 15:1969–1972. https://doi.org/10.1016/j.bmcl.2005.02.075

    Article  CAS  Google Scholar 

  18. Chen B, Petukhov PA, Jung M, Velena A, Eliseeva E, Dritschilo A, Kozikowski AP (2005) Chemistry and biology of mercaptoacetamides as novel histone deacetylase inhibitors. Bioorganic Med Chem Lett 15:1389–1392. https://doi.org/10.1016/j.bmcl.2005.01.006

    Article  CAS  Google Scholar 

  19. Huang C, Yin Q, Zhu W, Yang Y, Wang X, Qian X, Xu F (2011) Highly selective fluorescent probe for vicinal-dithiol-containing proteins and in situ imaging in living cells. Angew Chem Int Ed 50:7551–7556. https://doi.org/10.1002/anie.201101317

    Article  CAS  Google Scholar 

  20. Granata G, Stracquadanio S, Consoli GML, Cafiso V, Stefani S, Geraci C (2019) Synthesis of a calix[4]arene derivative exposing multiple units of fucose and preliminary investigation as a potential broad-spectrum antibiofilm agent. Carbohydr Res 476:60–64. https://doi.org/10.1016/j.carres.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  21. Chen C, Yang X, Fang H, Hou X (2019) Design, synthesis and preliminary bioactivity evaluations of 8-hydroxyquinoline derivatives as matrix metalloproteinase (MMP) inhibitors. Eur J Med Chem 181:111563. https://doi.org/10.1016/j.ejmech.2019.111563

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Gao C, Zhao L, Yuan Z, Chen Y, Jiang Y (2018) Phthalimide conjugations for the degradation of oncogenic PI3K. Eur J Med Chem 151:237–247. https://doi.org/10.1016/j.ejmech.2018.03.066

    Article  CAS  PubMed  Google Scholar 

  23. Larcher A, Nocentini A, Supuran CT, Winum JY, van der Lee A, Vasseur JJ, Laurencin D, Smietana M (2019) Bis-benzoxaboroles: design synthesis and biological evaluation as carbonic anhydrase inhibitors. ACS Med Chem Lett 10:1205–1210. https://doi.org/10.1021/acsmedchemlett.9b00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stolfa DA, Marek M, Lancelot J, Hauser AT, Walter A, Leproult E, Melesina J, Rupmf T, Wurtz JM, Cavarelli J, Sippl W, Pierce RJ, Romier C, Jung M (2014) Molecular basis for the antiparasitic activity of a mercaptoacetamide derivative that inhibits histone deacetylase 8 (hdac8) from the human pathogen Schistosoma mansoni. J Mol Biol 426:3442–3453. https://doi.org/10.1016/j.jmb.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  25. Paul S, Roy P, Sardar PS, Majhi A (2019) Design, synthesis, and biophysical studies of novel 1,2,3-triazole-based quinoline and coumarin compounds. ACS Omega 4:7213–7230. https://doi.org/10.1021/acsomega.9b00414

    Article  CAS  Google Scholar 

  26. Bangalore PK, Vagolu SK, Bollikanda RK, Veeragoni DK, Choudante PC, Misra S, Sriram D, Sridhar B, Kantevari S (2020) Usnic acid enaminone-coupled 1,2,3-triazoles as antibacterial and antitubercular agents. J Nat Prod 83:26–35. https://doi.org/10.1021/acs.jnatprod.9b00475

    Article  CAS  PubMed  Google Scholar 

  27. Marrero J, Trujillo C, Rhee KY, Ehrt S (2013) Glucose phosphorylation is required for mycobacterium tuberculosis persistence in mice. Plos Pathog 9:e1003116. https://doi.org/10.1371/journal.ppat.1003116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baker PJ, Britton KL, Fisher M, Esclapez J, Pire C, Bonete MJ, Ferrer J, Rice DW (2009) Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily. PNAS 106:779–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conway T (1992) The Entner–Doudoroff pathway: history, physiology, and molecular biology. FEMS Microbiol Rev 103:1–28. https://doi.org/10.1111/j.1574-6968.1992.tb05822.x

    Article  CAS  Google Scholar 

  30. Chikale RV, Barmade MA, Murumkar PR, Yadav MR (2018) Overview of the development of DprE1 inhibitors for combating the menace of tuberculosis. J Med Chem 61:8563–8593. https://doi.org/10.1021/acs.jmedchem.8b00281

    Article  CAS  Google Scholar 

  31. Manina G, Pasca MR, Buroni S, De Rossi E, Riccardi G (2010) Decaprenylphosphoryl-β-d-ribose 2′-epimerase from Mycobacterium tuberculosis is a magic drug target. Curr Med Chem 17:3099–3108. https://doi.org/10.2174/092986710791959693

    Article  CAS  PubMed  Google Scholar 

  32. Brecik M, Centarova I, Mukherjee R, Kolly GS, Huszar S, Bobovska A, Kilacskova E, Mokosova V, Svetlikova Z, Sarkan M, Neres J, Kordulakova J, Cole ST, Mikusova K (2015) DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem Biol 10:1631–1636. https://doi.org/10.1021/acschembio.5b00237

    Article  CAS  PubMed  Google Scholar 

  33. Parikh SL, Xiao G, Tonge PJ (2000) Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 39:7645–7650. https://doi.org/10.1021/bi0008940

    Article  CAS  PubMed  Google Scholar 

  34. Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Xi P, Mead D, Crane DD, Musser JM, Barry CE III (1998) Inhibition of Mycobacterium tuberculosis β-ketoacyl ACP synthase by isoniazid. Science 280:1607–1610

    Article  CAS  PubMed  Google Scholar 

  35. Basso LA, Zheng R, Musser JM, Jacobs WR Jr, Blanchard JS (1998) Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J Infect Dis 178:769–775. https://doi.org/10.1086/515362

    Article  CAS  PubMed  Google Scholar 

  36. Morgunova E, Meining W, Illarionov B, Haase I, Jin G, Bacher A, Cushman M, Fischer M, Ladenstein R (2005) Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. Biochemistry 44:2746–2758. https://doi.org/10.1021/bi047848a

    Article  CAS  PubMed  Google Scholar 

  37. Cheng YS, Sacchettini JC (2016) Structural insights into Mycobacterium tuberculosis Rv2671 protein as a dihydrofolate reductase functional analogue contributing to para-aminosalicylic acid resistance. Biochemistry 55:1107–1119. https://doi.org/10.1021/acs.biochem.5b00993

    Article  CAS  PubMed  Google Scholar 

  38. Long Q, Ji L, Wang H, Xie J (2010) Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets. Chem Biol Drug Des 75:339–347. https://doi.org/10.1111/j.1747-0285.2010.00946.x

    Article  CAS  PubMed  Google Scholar 

  39. Aubry A, Fisher LM, Jarlier V, Cambau E (2006) First functional characterization of a singly expressed bacterial type II topoisomerase: The enzyme from Mycobacterium tuberculosis. Biochem Biophys Res Commun 348:158–165. https://doi.org/10.1016/j.bbrc.2006.07.017

    Article  CAS  PubMed  Google Scholar 

  40. Dighe SN, Collet TA (2020) Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 199:112326–112338. https://doi.org/10.1016/j.ejmech.2020.112326

    Article  CAS  PubMed  Google Scholar 

  41. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731. https://doi.org/10.1046/j.1365-2958.2002.02779.x

    Article  CAS  PubMed  Google Scholar 

  42. Tripathi SM, Ramachandran R (2006) Direct evidence for a glutamate switch necessary for substrate recognition: crystal structures of lysine ε-aminotransferase (Rv3290c) from Mycobacterium tuberculosis H37Rv. J Mol Biol 362:877–886. https://doi.org/10.1016/j.jmb.2006.08.019

    Article  CAS  Google Scholar 

  43. Tanzawa T, Kato K, Girodat D, Ose T, Kumakura Y, Wieden HJ, Uchiumi T, Tanaka I, Yao M (2018) The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion. Nucleic Acids Res 46:3232–3244. https://doi.org/10.1093/nar/gky115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stewart JJP (2016) Stewart computational chemistry. Colorado Springs, CO, USA. http://OpenMOPAC.net

  45. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchinson GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krishna VS, Zheng S, Rekha EM, Guddat LW, Sriram D (2019) Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. J Comput Aided Mol Des 33:357–366. https://doi.org/10.1007/s10822-019-00184-1

    Article  CAS  PubMed  Google Scholar 

  47. Van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. In: Cancer cell culture: methods and protocols, pp 237–245. https://doi.org/10.1007/978-1-61779-080-5_20

  48. Clinical and Laboratory Standards Institute (2008) Performance standards for antimicrobial susceptibility tests, Eighteen informational supplements M100-S18, CLSI

  49. Collins LA, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41:1004–1009. https://doi.org/10.1128/AAC.41.5.1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schrodinger Release 2019-3: LigPrep, Schrodinger, LLC, New York, NY, 2019.

  51. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein, and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  52. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  53. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenki PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  54. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Authors thank SERB, Department of Science and Technology, India for financial assistance (EMR/2017/002946). PKB, RKP and ANP are thankful to the Department of Science and Technology, INSPIRE component for research fellowships. CSIR-IICT communication number: IICT/Pubs./2021/283.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavan Kumar Bangalore or Srinivas Kantevari.

Ethics declarations

Conflict of interest

No competing financial interests declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34797 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangalore, P.K., Pedapati, R.K., Pranathi, A.N. et al. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol Divers 27, 811–836 (2023). https://doi.org/10.1007/s11030-022-10456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10456-y

Keywords

Navigation