Skip to main content

Advertisement

Log in

Evaluation of xanthene-appended quinoline hybrids as potential leads against antimalarial drug targets

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of fused heterocycle xanthene-appended quinoline 6a–n was successfully synthesized with regioselectivity and characterized using IR, 1H NMR, 13C NMR, and mass spectral data. Molecular docking was performed to find the binding efficacy of all these newly synthesized compounds towards thirteen antimalarial drug targets. Molecular dynamics simulation was carried out to predict the stability of the ligand-bound complex in a solvent medium. Blind and site-directed docking with compounds 6a–n against 13 drug targets revealed most of the ligands to have a good binding affinity with the targets. Analysis on the basis of binding energy, binding modalities of the ligands, intermolecular interactions, and pharmacophore, we identified only one of the ligand–receptor complexes to provide better results. Molecular dynamic simulation of the selected receptor–ligand complex revealed that the synthesized compound had a better binding affinity with the receptor than the native ligand complex. Further analysis of the synthesized ligand in the laboratory may prove promising results in the search for potential antimalarial drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of the study are included within the article and in supplementary files.

References

  1. Michael JP (2005) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 22(5):627–646. https://doi.org/10.1039/B413750G

    Article  CAS  PubMed  Google Scholar 

  2. Michael JP (2007) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 24(1):223–246. https://doi.org/10.1039/B509528J

    Article  CAS  PubMed  Google Scholar 

  3. Michael JP (2008) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 25(1):166–187. https://doi.org/10.1039/B612168N

    Article  CAS  PubMed  Google Scholar 

  4. Padwa A, Brodney MA, Liu B, Satake K, Wu T (1999) A cycloaddition approach toward the synthesis of substituted indolines and tetrahydroquinolines. J Org Chem 64(10):3595–3607. https://doi.org/10.1021/jo982453g

    Article  CAS  PubMed  Google Scholar 

  5. Atkins RJ, Breen GF, Crawford LP, GrinterTJ HMA, Hayes JF, Moores CJ, Saunders RN, Share AC, Walsgrove TC, Wicks C (1997) Synthetic routes to quinoline derivatives: novel syntheses of 3-butyryl-8-methoxy-4-[(2-methylphenyl)amino] quinoline and 3-butyryl-8-(2-hydroxyethoxy)-4-[(2 methylphenyl) amino]quinoline. Org Process Res Dev 1(3):185–197. https://doi.org/10.1021/op9700035

    Article  CAS  Google Scholar 

  6. Xia L, Idhayadhulla A, Lee YR, Kim SH, Wee YJ (2014) Microwave-assisted synthesis of diverse pyrrolo[3,4-c]quinoline-1,3-diones and their antibacterial activities. ACS Comb Sci 16(7):333–341. https://doi.org/10.1021/co500002s

    Article  CAS  PubMed  Google Scholar 

  7. Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP (2009) Structure−activity relationships for a series of quinoline-based compounds active against replicating andnonreplicating mycobacterium tuberculosis. J Med Chem 52(7):2109–2118. https://doi.org/10.1021/jm900003c

    Article  CAS  PubMed  Google Scholar 

  8. Detsi A, Bouloumbasi D, Prousis KC, Koufaki M, Athanasellis G, Melagraki G, Afantitis A, Igglessi-Markopoulou O, Kontogiorgis C, Hadjipavlou-Litina DJ (2007) Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-inflammatory agents. J Med Chem 50(10):2450–2458. https://doi.org/10.1021/jm061173n

    Article  CAS  PubMed  Google Scholar 

  9. Insuasty B, Montoya A, Becerra D, Quiroga J, Abonia R, Robledo S, Velez IV, Upegui Y, Nogueras M, Cobo J (2013) Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur J Med Chem 67:252–262. https://doi.org/10.1016/j.ejmech.2013.06.049

    Article  CAS  PubMed  Google Scholar 

  10. Campbell SF, Hardstone JD, Palmer MJ (1988) 2,4-Diamino-6,7-dimethoxyquinoline derivatives as .alpha.1-adrenoceptor antagonists and antihypertensive agents. J Med Chem 31(5):1031–1035. https://doi.org/10.1021/jm00400a025

    Article  CAS  PubMed  Google Scholar 

  11. Fotie J, Kaiser M, Delfín DA, Manley J, Reid CS, Paris JM, Wenzler T, Maes L, Mahasenan KV, Li C, Werbovetz KA (2010) Antitrypanosomal activity of 1,2-dihydroquinolin-6-ols and their ester derivatives. J Med Chem 53(3):966–982. https://doi.org/10.1021/jm900723w

    Article  CAS  PubMed  Google Scholar 

  12. Hoekstra WJ, Patel HS, Liang X, Blanc JBE, Heyer DO, Willson TM, Lannone MA, Kadwell SH, Miller LA, Pearce KH, Simmons CA, Shearin J (2005) Discovery of novel quinoline-based estrogen receptor ligands using peptide interaction profiling. J Med Chem 48(6):2243–2247. https://doi.org/10.1021/jm040154f

    Article  CAS  PubMed  Google Scholar 

  13. Goda FE, Abdel-Aziz AA-M, Ghoneim HA (2005) Synthesis and biological evaluation of novel 6-nitro-5-substituted aminoquinolines as local anesthetic and anti-arrhythmic agents: molecular modeling study. Bioorgan Med Chem 13(9):3175–3183. https://doi.org/10.1016/j.bmc.2005.02.050

    Article  CAS  Google Scholar 

  14. Zhi L, Tegley CM, Kallel EA, Marschke KB, Mais DE, Gottardis MM, Jones TK (1998) 5-Aryl-1,2-dihydrochromeno[3,4-f]quinolines: a novel class of nonsteroidal human progesterone receptor agonists. J Med Chem 41(3):291–302. https://doi.org/10.1021/jm9705768

    Article  CAS  PubMed  Google Scholar 

  15. Hancock JM, Jenekhe SA (2008) Unusual protonation-induced continuous tunability of optical properties and electroluminescence of a π-conjugated heterocyclic oligomer. Macromolecules 41(19):6864–6867. https://doi.org/10.1021/ma8016037

    Article  CAS  Google Scholar 

  16. Tao YT, Balasubramaniam E, Danel A, Jarosz B, Tomasik P (2001) Organic light- emitting diodes based on variously substituted pyrazoloquinolines as emitting material. Chem Mater 13(4):1207–1212. https://doi.org/10.1021/cm000622j

    Article  CAS  Google Scholar 

  17. Sinha M, Dola VR, Agarwal P, Srivastava K, Haq W, Puri SK, Katti SB (2014) Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain. Bioorg Med Chem 22(14):3573–3586. https://doi.org/10.1016/j.bmc

    Article  CAS  PubMed  Google Scholar 

  18. Pérez BC, Teixeira C, Albuquerque IS, Gut J, Rosenthal PJ, Gomes JRB, Prudenico M, Gomes P (2013) N-cinnamoylatedchloroquine analogues as dual stage antimalarial leads. J Med Chem 56(2):556–567. https://doi.org/10.1021/jm301654b

    Article  CAS  PubMed  Google Scholar 

  19. Zhou X, Li P, Shi Z, Tang X, Chen C, Liu W (2012) A highly selective fluorescent sensor for distinguishing cadmium from zinc ions based on a quinoline platform. Inorg Chem 51(17):9226–9231. https://doi.org/10.1021/ic300661c

    Article  CAS  PubMed  Google Scholar 

  20. Joshi P, Chakraborty S, Dey S, Shanker V, Ansari ZA, Singh SP, Chakrabarti P (2011) Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin. J Colloid Interface Sci 355(2):402–409. https://doi.org/10.1016/j.jcis.2010.12.032

    Article  CAS  PubMed  Google Scholar 

  21. Rojas Ruiz FA, García-Sánchez RN, Estupiñan SV, Gomez-Barrio A, Amado DFT, Perez-Solorzano BM, Nogal-Ruiz J, Martinez-Fernandez AR, KouznetsovVV, (2011) Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorgan Med Chem 19(15):4562–4573. https://doi.org/10.1016/j.bmc.2011.06.025

    Article  CAS  Google Scholar 

  22. Faruk Khan MO, Levi M, Tekwani BL, Wilson NH, Borne RF (2007) Synthesis of isoquinuclidineanalogs of chloroquine: antimalarial and antileishmanial activity. Bioorgan Med Chem 15(11):3919–3925. https://doi.org/10.1016/j.bmc.2006.11.024

    Article  CAS  Google Scholar 

  23. Biot C, Glorian G, Maciejewski LA, BrocardJS DO, Blampain G, Millet P, Georges AJ, Abessolo H, Dive D, Lebibi J (1997) Synthesis and antimalarial activity in-vitro and in-vivo of a new ferrocene−chloroquine analogue. J Med Chem 40(23):3715–3718. https://doi.org/10.1021/jm970401y

    Article  CAS  PubMed  Google Scholar 

  24. Khurana JM, Magoo D, Aggarwal K, Aggarwal N, Kumar R, Srivastava C (2012) Synthesis of novel 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-thiones and evaluation of their biocidal effects. Eur J Med Chem 58:470–477. https://doi.org/10.1016/j.ejmech.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  25. Hafez HN, Hegab MI, Ahmed-Farag IS, El-Gazzar ABA (2008) A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorgan Med Chem Lett 18(16):4538–4543. https://doi.org/10.1016/j.bmcl.2008.07.042

    Article  CAS  Google Scholar 

  26. Knight CG, Stephens T (1989) Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem J 258(3):683–687. https://doi.org/10.1042/bj2580683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112(3):1910–1956. https://doi.org/10.1021/cr200201z

    Article  CAS  PubMed  Google Scholar 

  28. Naya A, Ishikawa M, Matsuda K (2003) Structure–activity relationships of xanthene carboxamides, novel CCR1 receptor antagonists. Bioorgan Med Chem 11(6):875–884. https://doi.org/10.1016/S0968-0896(02)00559-X

    Article  CAS  Google Scholar 

  29. Ahmad M, King TA, Ko DK, Cha BH, Lee J (2002) Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J Phys D Appl Phys 35:1473. https://doi.org/10.1088/0022-3727/35/13/303

    Article  CAS  Google Scholar 

  30. Ramakrishna G, Ghosh HN (2001) Emission from the charge transfer state of xanthene dye-sensitized TiO2 nanoparticles: a new approach to determining back electron transfer rate and verifying the marcus inverted regime. J Phys Chem B 105(29):7000–7008. https://doi.org/10.1021/jp011291g

    Article  CAS  Google Scholar 

  31. Klimtchuk E, Rodgers MAJ, Neckers DC (1992) Laser flash photolysis studies of novel xanthene dye derivatives. J Phys Chem A 96(24):9817–9820. https://doi.org/10.1021/j100203a044

    Article  CAS  Google Scholar 

  32. Chauhan K, Sharma M, Saxena J, Singh SV, Trivedi P, Srivastava K, Pur SK, Saxena JK, Chaturvedi V, Chauhan PMS (2013) Synthesis and biological evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents. Eur J Med Chem 62:693–704. https://doi.org/10.1016/j.ejmech.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  33. Cornut D, Lemoine H, Kanishchev O, Okada E, Albrieux F, Beavogui AH, Bienbenu AL, Stephane P, Boulillon JP, Medebielle M (2013) Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines syntheses and antimalarial activities. J Med Chem 56(1):73–83. https://doi.org/10.1021/jm301076q

    Article  CAS  PubMed  Google Scholar 

  34. Pal S, Mishra M, Sudhakar DR, Siddiqui MH (2013) In-silico designing of a potent analogue against HIV-1 Nef protein and protease by predicting its interaction network with host cell proteins. J Pharm Bioallied Sci 5(1):66–73. https://doi.org/10.4103/0975-7406.106572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Salas PF, Herrmann C, Cawthray JF, Nimphius C, Kenkel A, Chen J, Kock CD, Smith PJ, Patrick BO, Adam MJ, Orvig C (2013) Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms. J Med Chem 56(4):1596–1613. https://doi.org/10.1021/jm301422h

    Article  CAS  PubMed  Google Scholar 

  36. Gemma S, Camodeca C, SannaCoccone S, Joshi BP, Bernetti M, Moretti V, Brogi S, Bonache de Marcous MC, SaviniTaramelli D, Basilico N, Parapini S, Rottmann M, Brun R, Lamponi S, Cacia S, Guiso G, Summers RL, Martin E, Saponara S, Gorelli B, Novellino E, Campiani G, Butini S (2012) Optimization of 4-aminoquinoline/ clotrimazole-based hybrid antimalarials: further structure-activity relationships, in vivo studies, and preliminary toxicity profiling. J Med Chem 55(15):6948–6967. https://doi.org/10.1021/jm300802s

    Article  CAS  PubMed  Google Scholar 

  37. Mott BT, Cheng KCC, Guha R, Kommer VP, Williams DL, VermeireJJ CM, Maloney DJ, Rai G, Jadhava A, Simeonov A, Inglese J, Posner GH, Thomas CJ (2012) A furoxan–amodiaquine hybrid as a potential therapeutic for three parasitic diseases. MedChemComm 3(12):1505–1511. https://doi.org/10.1039/C2MD20238G

    Article  CAS  PubMed  Google Scholar 

  38. Kumar A, Srivastava K, Raja Kumar S, Puri SK, Chauhan PMS (2008) Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg Med Chem Lett 18(24):6530–6533. https://doi.org/10.1016/j.bmcl.2008.10.049

    Article  CAS  PubMed  Google Scholar 

  39. Chiyanzu I, Clarkson C, Smith PJ, Lehman J, Gut J, Rosenthal PJ, Chibale K (2005) Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorgan Med Chem 13(19):3249–3261. https://doi.org/10.1016/j.bmc.2005.02.037

    Article  CAS  Google Scholar 

  40. Balaji GL, Rajesh K, Venkatesh M, Sarveswari S, Vijayakumar V (2013) Ultrasound-promoted synthesis of bi-, tri- and tetrapodalpolyhydroquinolines, 1,4-dihydropyridines and the corresponding pyridines. RSC Adv 4:39–46. https://doi.org/10.1039/C3RA45138K

    Article  Google Scholar 

  41. Rajesh K, Reddy BP, Vijayakumar V (2012) Ultrasound-promoted synthesis of novel bipodal and tripodalpiperidin-4-ones and silica chloride mediated conversion to its piperidin-4-ols: synthesis and structural confinements. Ultrason Sonochem 19(3):522–531. https://doi.org/10.1016/j.ultsonch.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  42. Kumari P, Yadav R, Bharti R, Parvin T (2020) Regioselective synthesis of pyrimidine-fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Mol Divers 24(1):107–117. https://doi.org/10.1007/s11030-019-09929-4

    Article  CAS  PubMed  Google Scholar 

  43. Rajesh K, Reddy BP, Vijayakumar V (2011) Novel bipodal, tripodal, and tetrapodal 1, 4-dihydropyridines—microwave-assisted synthesis and structural confinements. Can J Chem 89(10):1236–1244. https://doi.org/10.1139/v11-088

    Article  CAS  Google Scholar 

  44. Ragavan RV, Vijayakumar V, Kumari NS (2010) Synthesis and antimicrobial activities of novel 1,5-diaryl pyrazoles. Eur J Med Chem 45(3):1173–1180. https://doi.org/10.1016/j.ejmech.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  45. Ragavan RV, Vijayakumar V, Kumari NS (2009) Synthesis of some novel bioactive 4-oxy/thio substituted-1H-pyrazol-5(4H)-ones via efficient cross-Claisen condensation. Eur J Med Chem 44(10):3852–3857. https://doi.org/10.1016/j.ejmech.2009.04.010

    Article  CAS  Google Scholar 

  46. Illuminati G, Stegel F (1983) The formation of anionic σ-adducts from heteroaromatic compounds: structures, rates, and equilibria. Adv Heterocycl Chem. https://doi.org/10.1016/s0065-2725(08)60823-5

    Article  Google Scholar 

  47. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van der Spoel D, Hess B, Lindhahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kumari JLJ, Sudan RJJ, Sudandiradoss C (2017) Evaluation of peptide designing strategy against subunit reassociation in mucin 1: a steered molecular dynamics approach. PLoS ONE 12(8):e0183041. https://doi.org/10.1371/journal.pone.0183041

    Article  CAS  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Gr 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  51. De Lano WL (2002) ThePyMOL Molecular graphics system. Delano Scientific, San Carlos. http://www.pymol.org/pymol

  52. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  53. Mishra SS, Sharma CS, Singh HP, Pandiya H, Kumar N (2016) In silico ADME, bioactivity and toxicity parameters calculation of some selected anti-tubercular drugs. Int J Pharmaceut Phytopharmacol Res 6(6):77–79. https://doi.org/10.24896/eijppr.2016661

    Article  CAS  Google Scholar 

  54. Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:W223–W228. https://doi.org/10.1093/nar/gkn187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Rajesh K, Reddy BP, Vijayakumar M (2009) Synthesis and biological evaluation of 4-(4-(di-(1H-indol-3-yl) methyl) phenoxy)-2-chloroquinolines. Indian J Heterocycl Chem 19(1):95–96

    CAS  Google Scholar 

  56. Natarajan S, Rajesh K, Vijayakumar V, Suresh J, Lakshman PL (2009) 4-Azido-2-chloro-6-methylquinoline. Acta Crystallographica Sect E Struct Rep 65(4):671. https://doi.org/10.1107/S1600536809007041

    Article  CAS  Google Scholar 

  57. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  58. Horton JR, Sawada K, Nishibori M, Cheng X (2005) Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. J Mol Biol 353(2):334–344. https://doi.org/10.1016/j.jmb.2005.08.040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Horton JR, Sawada K, Nishibori M, Cheng X (2001) Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure 9(9):837–849. https://doi.org/10.1016/S0969-2126(01)00643-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yoshikawa T, Nakamura T, Yanai K (2019) Histamine N-methyltransferase in the brain. Int J Mol Sci 20(3):737. https://doi.org/10.3390/ijms20030737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Thurmond R (2011) Histamine in inflammation, 1st edn. Springer

    Google Scholar 

  62. Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R, Huerre M, Watanabe T, Ohtsu H, Louis J, Mécheri S (2009) Role of histamine and histamine receptors in the pathogenesis of malaria. Med Sci 25(4):377–381. https://doi.org/10.1051/medsci/2009254377

    Article  Google Scholar 

  63. Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R, Huerre M, Watanabe T, Ohtsu H, Louis J, Mécheri S (2008) Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease. J Exp Med 205(2):395–408. https://doi.org/10.1084/jem.20071548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Beghdadi WH, Schneider B, Porcherie A, Peronet R, Louis J, Mécheri S (2008) Interfering with histamine mediated signaling results in significant protection against severe malaria in mice. Int J Infect Dis 12(1):E314. https://doi.org/10.1016/j.ijid.2008.05.842

    Article  Google Scholar 

  65. Rodriguez AM, Hambly MG, Jandu S, Simão-Gurge R, Lowder C, Lewis EE, Riffell JA, Luckhart S (2021) Histamine ingestion by anopheles stephensi alters important vector transmission behaviors and infection success with diverse plasmodium species. Biomolecules 11(5):719. https://doi.org/10.3390/biom11050719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Vellore Institute of Technology and Marudhar Kesari Jain college for Women for providing the facilities and encouragement to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vijayakumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 5662 kb)

Supplementary file 2 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesu Jaya Sudan, R., Lesitha Jeeva Kumari, J., Iniyavan, P. et al. Evaluation of xanthene-appended quinoline hybrids as potential leads against antimalarial drug targets. Mol Divers 27, 709–727 (2023). https://doi.org/10.1007/s11030-022-10450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10450-4

Keywords

Navigation