Skip to main content
Log in

Recent advances in the green synthesis of Betti bases and their applications: a review

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Well-known Betti bases are the products obtained by the one-pot multicomponent reaction of 1-naphthol/2-naphthol, aliphatic/aromatic aldehydes, and secondary amines, and this reaction is known as the Betti reaction. During recent years, due to the unveiling of the pharmacological and synthetic potential of Betti bases, a tremendous increase in the studies reporting novel synthetic methods for the efficient synthesis of Betti bases was observed. This review presents the recent key developments in the green synthesis of the Betti bases and accounts for the significant number of the literature reported during 2019–2022. Both catalyst free as well as the catalyst promoted synthesis (nanocatalyst, biocatalyst, transition metal catalyst, etc.) along with the synthetic applications (catalyst, ligands/chiral auxiliaries, and valuable synthons), optoelectronic applications (fluorescence sensors for phosgene gas, Hg2+, and Cr3+ detection, quasi-reversible redox potential) and biological properties (anticancer agents, antioxidant, anti-inflammatory agents, antitubercular agents, pesticidal agents, anti-Alzheimer agents, Topoisomerase I inhibitors, YAP-TEAD interaction inhibitors, and DNA binding and cleavage activity) are discussed.

Graphical abstract

There is a surge of interest for the development of the green and efficient Betti reaction for the construction of C–C and C–N bond in a single-step reaction accessing Betti bases as products. Along with key methodological developments for the green synthesis of Betti bases, their applications in synthetic organic chemistry, optoelectronic sensors, advanced materials synthesis, agrochemicals and pharmaceutically active scaffolds, during the period of 2019–2022, have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Marson CM (2012) Multicomponent and sequential organocatalytic reactions: diversity with atom-economy and enantiocontrol. Chem Soc Rev 41:7712–7722. https://doi.org/10.1039/C2CS35183H

    Article  CAS  Google Scholar 

  2. Isambert N, Duque MDMS, Plaquevent JC, Genisson Y, Rodriguez J, Constantieux T (2011) Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chem Soc Rev 40:1347–1357. https://doi.org/10.1039/C0CS00013B

    Article  CAS  Google Scholar 

  3. Estévez V, Villacampa M, Menéndez JC (2014) Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem Soc Rev 43:4633–4657. https://doi.org/10.1039/C3CS60015G

    Article  Google Scholar 

  4. Levi L, Müller TJ (2016) Multicomponent syntheses of functional chromophores. Chem Soc Rev 45:2825–2846. https://doi.org/10.1039/C5CS00805K

    Article  CAS  Google Scholar 

  5. Hulme C, Gore V (2003) Multicomponent reactions: emerging chemistry in drug discovery ‘from xylocain to crixivan.’ Curr Med Chem 10:51–80. https://doi.org/10.2174/0929867033368600

    Article  CAS  Google Scholar 

  6. Xiong L, He SQ, Pan J, Yu B (2022) Metal-/catalyst-free one-pot three-component thioamination of 1, 4-naphthoquinone in a sustainable solvent. New J Chem 10:4550–4554. https://doi.org/10.1039/D1NJ05741C

    Article  Google Scholar 

  7. Ma CH, Ji Y, Zhao J, He X, Zhang ST, Jiang YQ (2022) Transition-metal-free three-component acetalation-pyridylation of alkenes via photoredox catalysis. Chin J Catal 43:571–583. https://doi.org/10.1016/S1872-2067(21)63917-7

    Article  CAS  Google Scholar 

  8. Ganem B (2009) Strategies for innovation in multicomponent reaction design. Acc Chem Res 42:463–472. https://doi.org/10.1021/ar800214s

    Article  CAS  Google Scholar 

  9. Ahmadi T, Ziarani GM, Gholamzadeh P, Mollabagher H (2017) Recent advances in asymmetric multicomponent reactions (AMCRs). Tetrahedron Asymmetry 28:708–724. https://doi.org/10.1016/j.tetasy.2017.04.002

    Article  CAS  Google Scholar 

  10. Cai XH, Xie B (2013) Recent advances on organocatalysed asymmetric Mannich reactions. ARKIVOC 1:264–293. https://doi.org/10.3998/ark.5550190.p007.839

    Article  Google Scholar 

  11. Shi Y, Wang Q, Gao S (2018) Recent advances in the intramolecular Mannich preaction in natural products total synthesis. Org Chem Front 5:1049–1066. https://doi.org/10.1039/C7QO01079F

    Article  CAS  Google Scholar 

  12. Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Gajjar ND (2022) Recent advancements of applications of ionic liquids in synthetic construction of heterocyclic scaffolds: a spotlight. J Mol Liq 348:118329. https://doi.org/10.1016/j.molliq.2021.118329

    Article  CAS  Google Scholar 

  13. Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT (2020) A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen-and oxygen-containing heterocyclic scaffolds. RSC Adv 10:32740–32820. https://doi.org/10.1039/D0RA02272A

    Article  CAS  Google Scholar 

  14. Karimi B, Enders D, Jafari E (2013) Recent advances in metal-catalyzed asymmetric Mannich reactions. Synthesis 45:2769–2812. https://doi.org/10.1055/s-0033-1339479

    Article  CAS  Google Scholar 

  15. Beriša A, Glavač D, Zheng C, You SL, Gredičak M (2022) Enantioselective construction of a congested quaternary stereogenic center in isoindolinones bearing three aryl groups via an organocatalytic formal Betti reaction. Org Chem Front 9:428–435. https://doi.org/10.1039/D1QO01684A

    Article  Google Scholar 

  16. Szatmári I, Fülöp F (2004) Syntheses and transformations of 1-(aminobenzyl)-2-naphthol derivatives. Curr Org Synth 1:155–165. https://doi.org/10.2174/1570179043485402

    Article  Google Scholar 

  17. Cardellicchio C, Capozzi MAM, Naso F (2010) The Betti base: the awakening of a sleeping beauty. Tetrahedron Asymmetry 21:507–517. https://doi.org/10.1016/j.tetasy.2010.03.020

    Article  CAS  Google Scholar 

  18. Shahrisa A, Teimuri-Mofrad R, Gholamhosseini-Nazari M (2015) Synthesis of a new class of Betti bases by the Mannich-type reaction: efficient, facile, solvent-free and one-pot protocol. Mol divers 19:87–101. https://doi.org/10.1007/s11030-014-9559-x

    Article  CAS  Google Scholar 

  19. Heidari P, Cheraghali R, Veisi H (2016) Betti base-modified magnetic nanoparticles as a novel basic nanocatalyst in Knoevenagel condensation and its related palladium nanocatalyst in Suzuki coupling reactions. App Organomet Chem 30:991–997. https://doi.org/10.1002/aoc.3532

    Article  CAS  Google Scholar 

  20. Mou J, Gao G, Chen C, Liu J, Gao J, Liu Y, Pei D (2017) Highly efficient one-pot three-component Betti reaction in water using reverse zinc oxide micelles as a recoverable and reusable catalyst. RSC adv 7:13868–13875. https://doi.org/10.1039/C6RA28599F

    Article  CAS  Google Scholar 

  21. Blakemore DC, Castro L, Chussrcher I, Rees DC, Thomas AW, Wilson DM, Wood A (2018) Organic synthesis provides opportunities to transform drug discovery. Nat Chem 10:383–394. https://doi.org/10.1038/s41557-018-0021-z

    Article  CAS  Google Scholar 

  22. Nishtala VB, Mahesh C, Bhargavi G, Pasala VK, Basavoju S (2020) Synthesis of spirooxindolocarbamates based on Betti reaction: antibacterial, antifungal and antioxidant activities. Mol Divers 24:1139–1147. https://doi.org/10.1007/s11030-019-10017-w

    Article  CAS  Google Scholar 

  23. Olyaei A, Sadeghpour M (2019) Recent advances in the synthesis and synthetic applications of Betti base (aminoalkylnaphthol) and bis-Betti base derivatives. RSC Adv 9:18467–18497. https://doi.org/10.1039/C9RA02813G

    Article  CAS  Google Scholar 

  24. Trost BM (2002) On inventing reactions for atom economy. Acc Chem Res 35:695–705. https://doi.org/10.1021/ar010068z

    Article  CAS  Google Scholar 

  25. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278. https://doi.org/10.1039/B418069K

    Article  CAS  Google Scholar 

  26. Banerjee B (2017) Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultraso sonochem 35:1–14. https://doi.org/10.1016/j.ultsonch.2016.09.023

    Article  CAS  Google Scholar 

  27. Brahmachari G, Banerjee B (2015) Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: an emerging field of green chemistry practice and sustainability. Curr Green Chem 2:274–305. https://doi.org/10.2174/2213346102666150218195142

    Article  CAS  Google Scholar 

  28. Tavakolian M, Hosseini-Sarvari M (2021) Catalyst-free organic transformations under visible-light. ACS Sustain Chem Eng 9:4296–4323. https://doi.org/10.1021/acssuschemeng.0c06657

    Article  CAS  Google Scholar 

  29. Gangopadhyay A, Mahapatra AK (2019) Phosgene invites selective switch-on fluorescence at ppm concentrations in a Betti base by hindering 2-way PET. New J Chem 43:11743–11748. https://doi.org/10.1039/C9NJ02541C

    Article  CAS  Google Scholar 

  30. Rathod AS, Reddy PV, Biradar JS (2020) Microwave-assisted synthesis of some indole and isoniazid derivatives as antitubercular agents and molecular docking study. Russ J Org Chem 56:662–670. https://doi.org/10.1134/S1070428020040156

    Article  CAS  Google Scholar 

  31. Zagranyarska I, Kostova K, Zagranyarski Y, Nikolova R, Shivachev B, Dimitrov V (2020) Estrone derived 2-naphthol analogue in the diastereoselective one-pot Betti-condensation. Mol Divers 24:1343–1353. https://doi.org/10.1007/s11030-019-09998-5

    Article  CAS  Google Scholar 

  32. Gao F, Tao D, Ju C, Yang BB, Bao XQ, Zhang D, Li L (2021) Regioselectivity of aminomethylation in 3-acetyl-7-hydroxycoumarins: Mannich bases and Betti bases. New J Chem 45:9864–9871. https://doi.org/10.1039/D1NJ01584B

    Article  CAS  Google Scholar 

  33. Bahri F, Shadi M, Mohammadian R, Javanbakht S, Shaabani A (2021) Cu-decorated cellulose through a three-component Betti reaction: an efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine CH functionalization of N-acylhydrazones. Carbohydr Polym 265:118067. https://doi.org/10.1016/j.carbpol.2021.118067

    Article  CAS  Google Scholar 

  34. Ruijter E, Scheffelaar R, Orru RV (2011) Multicomponent reaction design in the quest for molecular complexity and diversity. Angew Chem Int Ed 50:6234–6246. https://doi.org/10.1002/anie.201006515

    Article  CAS  Google Scholar 

  35. Narayanan R (2012) Synthesis of green nanocatalysts and industrially important green reactions. Green Chem Lett Rev 5:707–725. https://doi.org/10.1080/17518253.2012.700955

    Article  CAS  Google Scholar 

  36. Nayak PS, Barik B, Achary LSK, Kumar A, Dash P (2019) Gold nanoparticles deposited on MnO2 nanorods modified graphene oxide composite: a potential ternary nanocatalyst for efficient synthesis of Betti bases and bisamides. Mol Catal 474:110415–110430. https://doi.org/10.1016/j.mcat.2019.110415

    Article  CAS  Google Scholar 

  37. Rakhtshah J, Shaabani B, Salehzadeh S, Moghadam NH (2019) Synthesis of 1-(α-aminoalkyl)-2-naphthol and α-aminonitrile derivatives with molybdenum Schiff base complex covalently bonded on silica-coated magnetic nanoparticles and DNA interaction study of one type of derivatives using computational and spectroscopic methods. Bioorg Chem 85:420–430. https://doi.org/10.1016/j.bioorg.2019.01.022

    Article  CAS  Google Scholar 

  38. Sanaeishoar H, Daneshyar M (2019) Synthesis γ-Fe2O3@ KIT-1 nanocomposite and its catalytic application in preparation of aminoalkylnaphtols. Polycycl Aromat Compd 39:1331–1342. https://doi.org/10.1080/10406638.2019.1676268

    Article  CAS  Google Scholar 

  39. Hussain FHS, Abdul DA (2020) Green synthesis of magnetite nanoparticles using Brassica napus flower extract: an efficient and highly recyclable catalyst for the one-pot synthesis of some new N, Nˉ-Bis[(p-cresol-2-yl) substituted phenyl methyl]-4, 4ˉ-oxydianilines. Egypt J Chem 63:1255–1268. https://doi.org/10.21608/ejchem.2019.13826.1857

    Article  Google Scholar 

  40. Barzinjy AA, Abdul DA, Hussain FH, Hamad SM (2020) Green synthesis of the magnetite (Fe3O4) nanoparticle using Rhus coriaria extract: a reusable catalyst for efficient synthesis of some new 2-naphthol bis-Betti bases. Inorg Nano-Met Chem 50:620–629. https://doi.org/10.1080/24701556.2020.1723027

    Article  CAS  Google Scholar 

  41. Vahidian M, Elhamifar D, Shaker M (2020) Core–shell structured magnetic mesoporous silica-titania: a novel, powerful and recoverable nanocatalyst. Polyhedron 178:114326. https://doi.org/10.1016/j.poly.2019.114326

    Article  CAS  Google Scholar 

  42. Kisomi RP, Shirini F, Golshekan M (2021) Fe3O4@ MCM-41@ ZrCl2: A novel magnetic mesoporous nanocomposite catalyst including zirconium nanoparticles for the synthesis of 1-(benzothiazolylamino) phenylmethyl-2-naphthols. Appl Organomet Chem 35:1–15. https://doi.org/10.1002/aoc.6212.9

    Article  Google Scholar 

  43. Akbarpour T, Khazaei A, Yousefi Seyf J, Sarmasti N (2021) Synthesis of 1-aminoalkyl-2-naphthols derivatives using an engineered copper-based nanomagnetic catalyst (Fe3O4@CQD@Si(OEt)(CH2)3NH@CC@N3@phenylacetylene@Cu). Appl Organomet Chem 35:e6361. https://doi.org/10.1002/aoc.6361

    Article  CAS  Google Scholar 

  44. Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118:801–838. https://doi.org/10.1021/acs.chemrev.7b00203

    Article  CAS  Google Scholar 

  45. Shaikh S, Ramana MMV (2021) Lipase-catalysed one-pot synthesis of thiazole-based Betti bases and their evaluation as potential cholinesterase inhibitors. Res Chem Intermed 47:2731–2750. https://doi.org/10.1007/s11164-021-04441-7

    Article  CAS  Google Scholar 

  46. Santhoshkumar R, Cheng CH (2019) Reaching green: heterocycle synthesis by transition metal-catalyzed C−H functionalization in sustainable medium. Chem Eur J 25:9366–9384. https://doi.org/10.1002/chem.201901026

    Article  CAS  Google Scholar 

  47. Foumeshi MK, Halimehjani AZ, Paghandeh H, Beier P (2020) ZnCl2-catalyzed synthesis of α-dithiocarbamato-alkyl-β-naphthols via the Betti reaction under solvent-free conditions. Tetrahedron Lett 61:152270. https://doi.org/10.1016/j.tetlet.2020.152270

    Article  CAS  Google Scholar 

  48. Alam MM, Bollikolla HB, Varala R (2022) Zn(OAc)2·2H2O-catalyzed Betti base synthesis under solvent-free conditions. Lett Org 19:14–18. https://doi.org/10.2174/1570178618666210616155257

    Article  CAS  Google Scholar 

  49. Iftikhar R, Zahoor AF, Ahmad S, Haq AU, Naheed S (2022) Revisiting the synthesis of Betti bases: facile, one-pot, and efficient synthesis of Betti bases promoted by FeCl3·6H2O. Curr Org Synth. https://doi.org/10.2174/1570179419666220127144352

    Article  Google Scholar 

  50. Keri RS, Patil M, Budagumpi S, Sasidhar BS (2021) An efficient, multicomponent synthesis of aminoalkylnaphthols via Betti reaction using ZSM-5 as a recoverable and reusable catalyst. Appl Organomet Chem 35:1–10. https://doi.org/10.1002/aoc.6316

    Article  CAS  Google Scholar 

  51. Yellapurkar I, Shaikh S, Pavale G, Bhabal S, Ramana MMV (2021) Kaolin-catalysed one-pot synthesis of thiophene containing aminonaphthols under solvent-free condition and their in vitro anticancer and antioxidant activity. Res Chem Intermed 47:4067–4082. https://doi.org/10.1007/s11164-021-04516-5

    Article  CAS  Google Scholar 

  52. Surya CP, Harichandran G, Muthu S (2021) Facile synthesis of aminoalkyl naphthols and single crystal X-ray, computational studies on 1-[morpholino (thiophen-2-yl) methyl] naphthalen-2-ol. J Mol Struct 1242:130861. https://doi.org/10.1016/j.molstruc.2021.130861

    Article  CAS  Google Scholar 

  53. Mansoori A, Eshghi H, Lari J (2020) Synthesis and characterization of Betti bases derivatives via green Mannich Reaction by NS-PCS and FHS as the catalyst. Polycycl Aromat Compd 40:1470–1478. https://doi.org/10.1080/10406638.2018.1557705

    Article  CAS  Google Scholar 

  54. Dandekar SN, Lotlikar OA, Ramana MMV, Rathod SV (2021) Synthesis, molecular docking, and in vitro antibacterial activities of some novel aminobenzylnaphthol derivatives via one-pot three-component reaction. Russ J Bioorg Chem 47:874–881. https://doi.org/10.1134/S1068162021040075

    Article  CAS  Google Scholar 

  55. Gutnov AV, Abaev VT, Demidov OP (2019) Betti reaction of 2-naphthol, furfural, and acetamide: an unexpected case of secondary carbo-Piancatelli rearrangement. Chem Heterocycl Compd 55:280–282. https://doi.org/10.1007/s10593-019-02454-0

    Article  CAS  Google Scholar 

  56. Teimuri-Mofrad R, Abbasi H, Vahedinia T, Ahadzadeh I (2020) Synthesis of ferrocenyl based Betti bases by a Mannich-type three-component reaction and investigation of their electrochemical behavior. J Inorg Organomet Polym Mater 30:955–964. https://doi.org/10.1007/s10904-019-01258-1

    Article  CAS  Google Scholar 

  57. Dikova K, Kostova K, Simova S, Linden A, Chimov A, Dimitrov V (2019) Synthesis and crystal structures of chiral ferrocene and ruthenocene substituted aminomethylnaphthols obtained through Betti-condensation. Polyhedron 165:177–187. https://doi.org/10.1016/j.poly.2019.03.019

    Article  CAS  Google Scholar 

  58. Zanetti A, Chaumont-Olive P, Schwertz G, Nascimento de Oliveira M, Gomez Fernandez MA, Amara Z, Cossy J (2020) Crystallization-induced diastereoisomer transformation of dihydroartemisinic aldehyde with the Betti base. Org Process Res Dev 24:850–855. https://doi.org/10.1021/acs.oprd.9b00481

    Article  CAS  Google Scholar 

  59. Lathwal A, Mathew BP, Nath M (2021) Syntheses, biological and material significance of dihydro [1, 3] oxazine derivatives: an overview. Curr Pharm Anal 25:133–174. https://doi.org/10.2174/1385272824999201008154659

    Article  CAS  Google Scholar 

  60. Zhimomi BK, Imchen P, Phucho T (2022) Recent advances in strategies of green synthesis of 1,3-oxazines -a brief review. Tetrahedron 109:132672. https://doi.org/10.1016/j.tet.2022.132672

    Article  CAS  Google Scholar 

  61. Saikia BS, Deb ML, Baruah PK (2021) Green synthesis of 1,3-oxazines by visible light-promoted catalyst-free C-H activation/cyclization of tertiary amines. Environ Chem Lett 20:108–118. https://doi.org/10.1007/s10311-021-01308-6

    Article  CAS  Google Scholar 

  62. Chakrabortty S, Konieczny K, Müller BH, Spannenberg A, Kamer PC, de Vries JG (2022) Betti base derived P-stereogenic phosphine-diamidophosphite ligands with a single atom spacer and their application in asymmetric catalysis. Catal Sci Technol 12:1392–1399. https://doi.org/10.1039/D1CY02017J

    Article  CAS  Google Scholar 

  63. Grainge C, Rice P (2010) Management of phosgene-induced acute lung injury. Clin Toxicol 48:497–508. https://doi.org/10.3109/15563650.2010.506877

    Article  CAS  Google Scholar 

  64. Chen L, Wu D, Yoon J (2018) Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens 3:27–43. https://doi.org/10.1021/acssensors.7b00816

    Article  CAS  Google Scholar 

  65. Lee JJ, Kim YS, Nam E, Lee SY, Lim MH, Kim C (2016) A PET-based fluorometric chemosensor for the determination of mercury(II) and pH, and hydrolysis reactionbased colorimetric detection of hydrogen sulfide. Dalton Trans 45:5700–5712. https://doi.org/10.1039/C6DT00147E

    Article  CAS  Google Scholar 

  66. Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192. https://doi.org/10.1016/j.ccr.2011.09.010

    Article  CAS  Google Scholar 

  67. Amitha GS, Rajan VK, Amritha B, Muraleedharan K, Vasudevan S (2019) Betti base and its modified phthalonitrile derivative for the turn on fluorimetric detection of Hg2+ and Cr3+ ions. J Photochem Photobiol A Chem 382:111904. https://doi.org/10.1016/j.jphotochem.2019.111904

    Article  CAS  Google Scholar 

  68. Jin KT, Lu ZB, Chen JY, Liu YY, Lan HR, Dong HY, Chen XY (2020) Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J Nanomater 2020:9184284. https://doi.org/10.1155/2020/9184284

    Article  CAS  Google Scholar 

  69. Puerta AR, Abdilla GR, Demanuele K, Fernandes MX, Bosica G, Padrón JM (2019) Naphthol-derived Betti bases as potential SLC6A14 blockers. J Mol Clin Med 2:35–40. https://doi.org/10.31083/j.jmcm.2019.02.7181

    Article  Google Scholar 

  70. Sharma A, Das J (2019) (2019) Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol 17:92. https://doi.org/10.1186/s12951-019-0525-8

    Article  CAS  Google Scholar 

  71. Neha K, Haider MR, Pathak A, Yar MS (2019) Medicinal prospects of antioxidants: a review. Eur J Med Chem 178:687–704. https://doi.org/10.1016/j.ejmech.2019.06.010

    Article  CAS  Google Scholar 

  72. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI (2021) Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. Eur J Med Chem 209:112891. https://doi.org/10.1016/j.ejmech.2020.112891

    Article  CAS  Google Scholar 

  73. Hutchings MI, Truman AW, Wilkinson B (2019) Antibiotics: past, present and future. Curr Opin microbiol 51:72–80. https://doi.org/10.1016/j.mib.2019.10.008

    Article  CAS  Google Scholar 

  74. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129. https://doi.org/10.1038/nm1145

    Article  CAS  Google Scholar 

  75. Lamberth C, Jeanmart S, Luksch T, Plant A (2013) Current challenges and trends in the discovery of agrochemicals. Science 341:742–746. https://doi.org/10.1126/science.1237227

    Article  CAS  Google Scholar 

  76. Shang J, Li Y, Yang N, Xiong L, Wang B (2022) Synthesis and evaluation of novel 1-(((6-substitutedbenzo[d]thiazol-2-yl)amino)(heteroaryl)methyl)naphthalen-2-ol as pesticidal agents. J Enzyme Inhib Med Chem 37:641–651. https://doi.org/10.1080/14756366.2022.2032687

    Article  CAS  Google Scholar 

  77. Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802. https://doi.org/10.1038/nrc1977

    Article  CAS  Google Scholar 

  78. Thomas A, Pommier Y (2019) Targeting topoisomerase I in the era of precision medicine. Clin Cancer Res 25:6581–6589. https://doi.org/10.1158/1078-0432.CCR-19-1089

    Article  CAS  Google Scholar 

  79. Nagaraju B, Kovvuri J, Kumar CG, Routhu SR, Shareef MA, Kadagathur M, Kamal A (2019) Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg Med Chem 27:708–720. https://doi.org/10.1016/j.bmc.2019.01.011

    Article  CAS  Google Scholar 

  80. Iftikhar R, Zahoor AF, Irfan M, Rasul A, Rao F (2021) Synthetic molecules targeting yes associated protein activity as chemotherapeutics against cancer. Chem Biol Drug Des 98:1–13. https://doi.org/10.1111/cbdd.13960

    Article  CAS  Google Scholar 

  81. Karatas H, Akbarzadeh M, Adihou H, Hahne G, Pobbati AV, Yihui Ng E, Guéret SM, Sievers S, Pahl A, Metz M, Zinken S, Dötsch L, Nowak C, Thavam S, Friese A, Kang CB, Hong W, Waldmann H (2020) Discovery of covalent inhibitors targeting the transcriptional enhanced associate domain central pocket. J Med Chem 63:11972–11989. https://doi.org/10.1021/acs.jmedchem.0c01275

    Article  CAS  Google Scholar 

  82. Amitha GS, Vasudevan S (2020) DNA binding and cleavage studies of novel Betti base substituted quaternary Cu(II) and Zn(II) phthalocyanines. Polyhedron 190:114773. https://doi.org/10.1016/j.poly.2020.114773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsha Iftikhar.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iftikhar, R., Kamran, M., Iftikhar, A. et al. Recent advances in the green synthesis of Betti bases and their applications: a review. Mol Divers 27, 543–569 (2023). https://doi.org/10.1007/s11030-022-10427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10427-3

Keywords

Navigation