Skip to main content
Log in

NaH-promoted one-pot synthesis of 5-amidoimidazoles from arylamines, carbon disulfide and isocyanides

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A novel, convenient and efficient protocol to access functionalized 5-amidoimidazoles is developed via one-pot synthesis from readily available materials of arylamines, carbon disulfide and isocyanides. The transformation was realized at room temperature and provided 5-amidoimidazoles in moderate to good yields in the presence of NaH. In addition, control experiments indicated that the process might be achieved via the base-induced cyclization of activated methylene isocyanides with N,N-disubstituted thioureas that produced from the reaction of amines and carbon disulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Eicher T, Hauptmann S, Speicher A (2012) The chemistry of heterocycles: structure, reactions, synthesis, and applications, Third completely revised and enlarged edition, Wiley-VCH Verlag & Co. KGaA. Boschstr. 2:217–228

    Google Scholar 

  2. Zhang L, Peng X-M, Damu GLV, Gen R-X, Zhou C-H (2014) Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 34:340–437. https://doi.org/10.1002/med.21290

    Article  CAS  Google Scholar 

  3. Wang X-Q, LiuL-X LY, Sun C-J, Chen W, Li L, Zhang H-B, Yang X-D (2013) design, synthesis and biological evaluation of novel hybrid compounds of imidazole scaffold-based 2-benzylbenzofuran as potent anticancer agents. Eur J Med Chem 62:111–121. https://doi.org/10.1016/j.ejmech.2012.12.040

    Article  CAS  Google Scholar 

  4. Zarnowska ED, Rodgers FC, Oh I, Rau V, Lor C, Laha KT, Jurd R, Rudolph U, Eger EI 2nd, Pearce RA (2015) Etomidate blocks LTP and impairs learning but does not enhance tonic inhibition in mice carrying the N265M point mutation in the Beta3 subunit of the GABAA receptor. Neuropharmacology 93:171–178. https://doi.org/10.1016/j.neuropharm.2015.01.011

    Article  CAS  Google Scholar 

  5. Leclercq L, Nardello-Rataj V (2016) Pickering emulsions based on cyclodextrins: a smart solution for antifungal azole derivatives topical delivery. Eur J Pharm Sci 82:126–137. https://doi.org/10.1016/j.ejps.2015.11.017

    Article  CAS  Google Scholar 

  6. Viesselmann CW, Descourouez JL, Jorgenson MR, Radke NA, Odorico JS (2016) Clinically significant drug interaction between clotrimazole and tacrolimus in pancreas transplant recipients and associated risk of allograft rejection. Pharmacotherapy 36:335–341. https://doi.org/10.1002/phar.1718

    Article  CAS  Google Scholar 

  7. Ríos-Malváez ZG, Cano-Herrera MA, Dávila-Becerril JC, Mondragón-Solórzano G, Ramírez-Apan MT, Morales-Morales D, Barroso-Flores J, Santillán-Benítez JG, Unnamatla MVB, García-Eleno MA, González-Rivas N, Cuevas-Yañez E (2021) Synthesis, characterization and cytotoxic activity evaluation of 4-(1,2,3-triazol-1-yl) salicylic acid derivatives. J Mol Struct 1225:129149. https://doi.org/10.1016/j.molstruc.2020.129149

    Article  CAS  Google Scholar 

  8. Linares-Anaya O, Avila-Sorrosa A, Díaz-Cedillo F, Gil-Ruiz LÁ, Correa-Basurto J, Salazar-Mendoza D, Orjuela AL, Alí-Torres J, Ramírez-Apan MT, Morales-Morales D (2021) Synthesis, characterization, and preliminary in vitro cytotoxic evaluation of a series of 2-substituted benzo [d] [1,3] azoles. Molecules 26:2780. https://doi.org/10.3390/molecules26092780

    Article  CAS  Google Scholar 

  9. Hernández-Romero D, Rosete-Luna S, López-Monteon A, Chávez-Piña A, Pérez-Hernández N, Marroquín-Flores J, Cruz-Navarro A, Pesado-Gómez G, Morales-Morales D, Colorado-Peralta R (2021) First-row transition metal compounds containing benzimidazole ligands: an overview of their anticancer and antitumor activity. Coord Chem Rev 439:213930. https://doi.org/10.1016/j.ccr.2021.213930

    Article  CAS  Google Scholar 

  10. Peytam F, Adib M, Shourgeshty R, Mohammadi-Khanaposhtani M, Jahani M, Imanparast S, Faramarzi MA, Mahdavi M, Moghadamnia AA, Rastegar H, Larijani B (2020) Design and synthesis of new imidazo[1,2-b]pyrazole derivatives, in vitro α-glucosidase inhibition, kinetic and docking studies. Mol Divers 24:69–80. https://doi.org/10.1007/s11030-019-09925-8

    Article  CAS  Google Scholar 

  11. Garrison JC, Youngs WJ (2005) Ag(I) N-heterocyclic carbene complexes: synthesis, structure, and application. Chem Rev 105:3978–4008. https://doi.org/10.1021/cr050004s

    Article  CAS  Google Scholar 

  12. Flanigan DM, Romanov-Michailidis F, White NA, Rovis T (2015) Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem Rev 115:9307–9387. https://doi.org/10.1021/acs.chemrev.5b00060

    Article  CAS  Google Scholar 

  13. D’Souza F, Smith PM, Zandler ME, McCarty AL, Itou M, Araki Y, Ito O (2004) Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. J Am Chem Soc 126:7898–7907. https://doi.org/10.1021/jă47u

    Article  CAS  Google Scholar 

  14. Amarasekara AS (2016) Alkaloids and isoprenoids modification by copper(i) -catalyzed huisgen 1,3-dipolar cycloaddition (click chemistry): toward new functions and molecular architectures. Chem Rev 116:6133–6183. https://doi.org/10.1021/acs.chemrev.5b00302

    Article  CAS  Google Scholar 

  15. Goossens K, Lava K, Bielawski CW, Binnemans K (2016) Ionic liquid crystals: versatile materials. Chem Rev 116:4643–4807. https://doi.org/10.1021/cr400334b

    Article  CAS  Google Scholar 

  16. Wang W, Ji X, Kapur A, Zhang C, Mattoussi H (2015) A multifunctional polymer combining the imidazole and zwitterion motifs as a biocompatible compact coating for quantum dots. J Am Chem Soc 137:14158–14172. https://doi.org/10.1021/jacs.5b08915

    Article  CAS  Google Scholar 

  17. Alves MJ, Booth BL, Fernanda M, Proenç JRP (1990) Synthesis of 5-amino-4-(cyanoformimidoyl)-1H-imidazole: a reactive intermediate for the synthesis of 6-carbamoyl-1,2-dihydropurines and 6-carbamoylpurines. J. Chem. Soc Perkin Trans 1:1705–1712. https://doi.org/10.1039/P19900001705

    Article  Google Scholar 

  18. Schrimsher JL, Schendel FJ, Stubbe J (1986) Isolation of a multifunctional protein with aminoimidazole ribonucleotide synthetase, glycinamide ribonucleotide synthetase, and glycinamide ribonucleotide transformylase activities: characterization of aminoimidazole ribonucleotide synthetase. J Biochemistry 25:4356–4365. https://doi.org/10.1021/bi00363a027

    Article  CAS  Google Scholar 

  19. Schrimsher JL, Schendel FJ, Stubbe J, Smith JM (1986) Purification and characterization of aminoimidazole ribonucleotide (AIR) synthetase from. Biochemistry 25:4366–4371. https://doi.org/10.1021/bi00363a028

    Article  CAS  Google Scholar 

  20. Estramareix B, David S (1986) Biosynthesis of thiamine: origin of the methyl carbon atom of the pyrimidine moiety in salmonella typhimurium. Biochem Biophys Res Commun 134:1136–1141. https://doi.org/10.1016/0006-291X(86)90369-4

    Article  CAS  Google Scholar 

  21. Ferris JP, Orgel LE (1966) An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J Am Chem Soc 88:1074–1074. https://doi.org/10.1021/ja00957a050

    Article  CAS  Google Scholar 

  22. Koch TH, Rodehorst RM (1974) Quantitative investigation of the photochemical conversion of diaminomaleonitrile to diaminofumaronitrile and 4-amino-5-cyanoimidazole. J Am Chem Soc 96:6707–6710. https://doi.org/10.1002/chin.197452149

    Article  CAS  Google Scholar 

  23. Reayi A, Hosmane RS (2004) Inhibition of adenosine deaminase by novel 5:7 fused heterocycles containing the imidazo[4,5-e][1,2,4]triazepine ring system: a structure-activity relationship study. J Med Chem 47:1044–1050. https://doi.org/10.1021/jm0304257

    Article  CAS  Google Scholar 

  24. Samari HR, Seglen PO (1998) Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, andn 6-mercaptopurine riboside evidence for involvement of amp-activated protein kinase. J Biol Chem 273:23758–23763. https://doi.org/10.1074/jbc.273.37.23758

    Article  CAS  Google Scholar 

  25. Kadir K, Shaw G, Wright D (1980) Purines, pyrimidines, and imidazoles. part 56. Some aminoimidazole-carboxamidines and derived adenines. J. Chem. Soc Perkin Trans 1:2728–2731. https://doi.org/10.1039/P19800002728

    Article  Google Scholar 

  26. Shabalin DA, Dunsford JJ, Ngwerume S, Saunders AR, Gill DM, Camp JE (2020) Synthesis of 2,4-disubstituted imidazoles via nucleophilic catalysis. Synlett 31(08):797–800. https://doi.org/10.1055/s-0039-1690832

    Article  CAS  Google Scholar 

  27. Ananthu S, Aneeja T, Anilkumar G (2021) N-Arylation of imidazoles: an overview. ChemistrySelect 6:9794–9805. https://doi.org/10.1002/slct.202102411

    Article  CAS  Google Scholar 

  28. Li Y, Huang Z, Mo G, Jiang W, Zheng C, Feng P, Ruan Z (2021) Direct electrochemical synthesis of sulfur-containing triazolium inner salts. Chin J Chem 39:942–946. https://doi.org/10.1002/cjoc.202000586

    Article  CAS  Google Scholar 

  29. Beuvin M, Manneveau M, Diab S, Picard B, Sanselme M, Piettre SR, Legros J, Chataigner I (2018) New synthesis of imidazole derivatives from cyanobenzenes. Tetrahedron Lett 59:4487–4491. https://doi.org/10.1016/j.tetlet.2018.11.020

    Article  CAS  Google Scholar 

  30. Hitoshi O, Tomohiro A, Kazutada I, Makoto I, Jae-Hoon C, Hirokazu K, Toshiyuki K (2018) Synthesis of double-13C-labeled imidazole derivatives. Tetrahedron Lett 59(39):3516–3518. https://doi.org/10.1016/j.tetlet.2018.07.048

    Article  CAS  Google Scholar 

  31. McLaughlin M, Mohareb RM, Rapoport H (2003) An efficient procedure for the preparation of 4-substituted 5-aminoimidazoles. J Org Chem 68:50–54. https://doi.org/10.1021/jo026257s

    Article  CAS  Google Scholar 

  32. Hunt JT, Bartlett P (1978) Regioselective synthesis of 5-amino-4- imidazolecarboxylates via isonitrile cycloaddition. Synthesis. https://doi.org/10.1055/s-1978-24872

    Article  Google Scholar 

  33. Dukanya D, Swaroop TR, Rangappa S, Rangappa KS, Basappa, (2019) Cyclization of activated methylene isocyanides with methyl N(N), N′- di(tri)substituted carbamimidothioate: a novel entry for the synthesis of n,1-aryl-4-tosyl/ethoxycarbonyl-1h-imidazol-5-amines. SynOpen 3:71–76. https://doi.org/10.1055/s-0039-1690328

    Article  CAS  Google Scholar 

  34. Sapuppo G, Wang Q, Swinnen D, Zhu J (2014) Copper-catalyzed three- component synthesis of 5-acetamidoimidazoles from carbodiimides, acyl chlorides and isocyanides. Org Chem Front 1:240–246. https://doi.org/10.1039/c4qo00034j

    Article  CAS  Google Scholar 

  35. Soh CH, Chui W-K, Lam Y-L (2006) Synthesis of 2,4-disubstituted 5-aminoimidazoles using microwave irradiation. J Comb Chem 8:464–468. https://doi.org/10.1021/cc060030j

    Article  CAS  Google Scholar 

  36. Shaabani A, Mohammadian R, Afshari R, Hooshmand SE, Nazeri MT, Javanbakht S (2021) The status of isocyanide-based multi-component reactions in Iran (2010–2018). Mol Divers 25:1145–1210. https://doi.org/10.1007/s11030-020-10049-7

    Article  CAS  Google Scholar 

  37. Mohammadi-Khanaposhtani M, Jalalimanesh N, Saeedi M, Larijani B, Mahdavi M (2020) Synthesis of highly functionalized organic compounds through Ugi post-transformations started from propiolic acids. Mol Divers 24:855–887. https://doi.org/10.1007/s11030-019-09975-y

    Article  CAS  Google Scholar 

  38. Sisko J, Kassick AJ, Mellinger M, Filan JJ, Allen A, Olsen MA (2000) An investigation of imidazole and oxazole syntheses using aryl-substituted TosMIC reagents. J Org Chem 65:1516–1524. https://doi.org/10.1021/jo991782l

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Innovation and Entrepreneurship Training Program for college students (No. 202010349031) and Natural Science Foundation for colleges and universities in Anhui Province (No. YJS20210138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaohong Zhang or Hai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict to interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2321 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Zhang, Y., Yan, Q. et al. NaH-promoted one-pot synthesis of 5-amidoimidazoles from arylamines, carbon disulfide and isocyanides. Mol Divers 27, 135–143 (2023). https://doi.org/10.1007/s11030-022-10413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10413-9

Keywords

Navigation