Skip to main content
Log in

Bismuth-catalyzed arylation of ethyl glyoxylate with aniline via N–H insertion

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Glycine derivatives such as ethyl 2-(4-aminophenyl)-2-(phenylamino) acetate is an exciting and essential non-proteinogenic class of amino acids. Herein, we report an efficient and novel route to synthesize glycine derivatives using ethyl glyoxylate, aniline, and its derivatives catalyzed by bismuth salts. In our scheme, mild, non-toxic, and commercially viable reagents were utilized. The synthesized moieties were characterized by ESI-MASS, 1H-NMR, 13C-NMR, and XRD techniques. The target glycine derivatives were successfully obtained with a maximum yield of 87%. Moreover, the reaction is very green as water is the only byproduct.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Beak P, Zajdel WJ, Reitz DB (1984) Metalation and electrophilic substitution of amine derivatives adjacent to nitrogen: alpha.-metallo amine synthetic equivalents. Chem Rev 84(5):471–523. https://doi.org/10.1021/cr00063a003

    Article  CAS  Google Scholar 

  2. Chen L, Cui H, Wang Y, Liang X, Zhang L, Su CY (2018) Carbene insertion into N-H bonds with size-selectivity induced by a microporous ruthenium–porphyrin metal–organic framework. Dalton Trans 47(11):3940–3946. https://doi.org/10.1039/C8DT00434J

    Article  CAS  Google Scholar 

  3. Liu G, Li J, Qiu L, Liu L, Xu G, Ma B, Sun J (2013) Palladium-catalyzed carbenoid based N–H bond insertions: application to the synthesis of chiral α-amino esters. Org Biomol Chem 11(36):5998–6002. https://doi.org/10.1039/C3OB41331D

    Article  CAS  Google Scholar 

  4. Takahira Y, Chen M, Kawamata Y, Mykhailiuk P, Nakamura H, Peters BK, Reisberg SH, Li C, Chen L, Hoshikawa T, Shibuguchi T (2019) Electrochemical C (sp3)–H Fluorination. Synlett 30(10):1178–1182. https://doi.org/10.1055/s-0037-1611737

    Article  CAS  Google Scholar 

  5. Yet L (2001) Recent developments in catalytic asymmetric strecker-type reactions. Angew Chem Int Ed 40(5):875–877. https://doi.org/10.1002/1521-3773(20010302)40:5%3C875::AID-ANIE875%3E3.0.CO;2-C

    Article  CAS  Google Scholar 

  6. Paulissen R, Hayez E, Hubert AJ, Teyssié P (1974) Transition metal catalysed reactions of diazocompounds-part III a one-step synthesis of substituted furanes and esters. Tetrahedron Lett 15(7):607–608. https://doi.org/10.1016/S0040-4039(01)822838

    Article  Google Scholar 

  7. Xu B, Zhu SF, Xie XL, Shen JJ, Zhou QL (2011) Asymmetric N–H insertion reaction cooperatively catalyzed by rhodium and chiral spiro phosphoric acids. Angew Chem 123(48):11685–11688. https://doi.org/10.1002/ange.201105485

    Article  Google Scholar 

  8. Xu B, Zhu SF, Zuo XD, Zhang ZC, Zhou QL (2014) Enantioselective N–H insertion reaction of α-Aryl α- diazoketones: an efficient route to chiral α-aminoketones. Angew Chem Int Ed 53(15):3913–3916. https://doi.org/10.1002/anie.201400236

    Article  CAS  Google Scholar 

  9. Morilla ME, Díaz-Requejo MM, Belderrain TR, Nicasio MC, Trofimenko S, Pérez PJ (2002) Catalytic insertion of diazo compounds into N-H bonds: the copper alternative. Chem Commun 24:2998–2999. https://doi.org/10.1039/B207389G

    Article  Google Scholar 

  10. Saha B, Ghatak T, Sinha A, Rahaman SW, Bera JK (2011) Site-directed anchoring of an N-heterocyclic carbene on a dimetal platform: evaluation of a pair of diruthenium (I) catalysts for carbene-transfer reactions from ethyl diazoacetate. Organometallics 30(7):2051–2058. https://doi.org/10.1021/om200142p

    Article  CAS  Google Scholar 

  11. Sinha A, Daw P, Rahaman SW, Saha B, Bera JK (2011) A RuII–N-heterocyclic carbene (NHC) complex from metal–metal singly bonded diruthenium (I) precursor: synthesis, structure and catalytic evaluation. J Organomet Chem 696(6):1248–1257. https://doi.org/10.1016/j.jorganchem.2010.11.003

    Article  CAS  Google Scholar 

  12. Ho CM, Zhang JL, Zhou CY, Chan OY, Yan JJ, Zhang FY, Huang JS, Che CM (2010) A water-soluble ruthenium glycosylated porphyrin catalyst for carbenoid transfer reactions in aqueous media with applications in bioconjugation reactions. J Am Chem Soc 132(6):1886–1894. https://doi.org/10.1021/ja9077254

    Article  CAS  Google Scholar 

  13. Deng QH, Xu HW, Yuen AW, Xu ZJ, Che CM (2008) Ruthenium-catalyzed one-pot carbenoid N−H insertion reactions and diastereoselective synthesis of prolines. Org Lett 10(8):1529–1532. https://doi.org/10.1021/ol800087p

    Article  CAS  Google Scholar 

  14. Galardon E, Le Maux P, Simonneaux GJ (1997) Chem Soc Perkin Trans 1:2455

    Article  Google Scholar 

  15. Aviv I, Gross Z (2008) Iron (III) corroles and porphyrins as superior catalysts for the reactions of diazoacetates with nitrogen-or sulfur-Containing nucleophilic substrates: synthetic uses and mechanistic insights. Chem A Eur J 14(13):3995–4005. https://doi.org/10.1002/chem.200701885

    Article  CAS  Google Scholar 

  16. Baumann LK, Mbuvi HM, Du G, Woo LK (2007) Iron porphyrin catalyzed N− H insertion reactions with ethyl diazoacetate. Organometallics 26(16):3995–4002. https://doi.org/10.1021/om0610997

    Article  CAS  Google Scholar 

  17. Holzwarth MS, Alt I, Plietker B (2012) Catalytic activation of diazo compounds using electron-rich, defined iron complexes for carbene-Transfer reactions. Angew Chem Int Ed 51(22):5351–5354. https://doi.org/10.1002/anie.201201409

    Article  CAS  Google Scholar 

  18. Aviv I, Gross Z (2006) Iron corroles and porphyrins as very efficient and highly selective catalysts for the reactions of α-diazo esters with amines. Synlett 2006(06):951–953. https://doi.org/10.1055/s-2006-939035

    Article  CAS  Google Scholar 

  19. Zhu Y, Liu X, Dong S, Zhou Y, Li W, Lin L, Feng X (2014) Asymmetric N-H insertion of secondary and primary anilines under the catalysis of palladium and chiral guanidine derivatives. Angew Chem 126(6):1662–1666

    Article  Google Scholar 

  20. Anding BJ, Woo LK (2013) Iridium porphyrin catalyzed N-H insertion reactions: scope and mechanism. Organometallics 32(9):2599–2607

    Article  CAS  Google Scholar 

  21. Mangion IK, Nwamba IK, Shevlin M, Huffman MA (2009) Iridium-catalyzed X− H insertions of sulfoxonium ylides. Org Lett 11(16):3566–3569. https://doi.org/10.1021/ol901298p

    Article  CAS  Google Scholar 

  22. Fructos MR, Belderrain TR, de Frémont P, Scott NM, Nolan SP, Díaz-Requejo MM, Pérez PJ (2005) A gold catalyst for carbene-transfer reactions from ethyl diazoacetate. Angew Chem 117(33):5418–5422

    Article  Google Scholar 

  23. de Frémont P, Stevens ED, Fructos MR, Díaz-Requejo MM, Pérez PJ, Nolan SP (2006) Synthesis, isolation and characterization of cationic gold (I) N-heterocyclic carbene (NHC) complexes. Chem Commun 19:2045–2047. https://doi.org/10.1039/B601547F

    Article  Google Scholar 

  24. Bachmann S, Fielenbach D, Jørgensen KA (2004) Cu (i)-carbenoid-and Ag (i)-Lewis acid-catalyzed asymmetric intermolecular insertion of α-diazo compounds into N–H bonds. Org Biomol Chem 2(20):3044–3049. https://doi.org/10.1039/B412053A

    Article  CAS  Google Scholar 

  25. Suzuki H, Komatsu N, Ogawa T, Murafuji T, Ikegami T, Matano Y (2001) Organobismuth chemistry. Elsevier, Amsterdam

    Google Scholar 

  26. Ketata M, Desjardins Y, Ratti C (2013) Effect of liquid nitrogen pretreatments on osmotic dehydration of blueberries. J Food Eng 116(1):202–212. https://doi.org/10.1016/j.jfoodeng.2012.10.035

    Article  CAS  Google Scholar 

  27. So SS, Oottikkal S, Badjic JD, Hadad CM, Mattson AE (2014) Urea-catalyzed N-H insertion-arylation reactions of nitrodiazoesters. J Org Chem 79(11):4832–4842. https://doi.org/10.1021/jo500698q

    Article  CAS  Google Scholar 

  28. Nickerson DM, Angeles VV, Auvil TJ, So SS, Mattson AE (2013) Internal Lewis acid assisted ureas: tunable hydrogen bond donor catalysts. Chem Commun 49(39):4289–4291. https://doi.org/10.1039/C2CC37073E

    Article  CAS  Google Scholar 

  29. Ramakrishna K, Murali M, Sivasankar C (2015) Chemoselective carbene insertion into the N-H bond over O–H bond using a well-defined single site (P–P) Cu (I) catalyst. Org Lett 17(15):3814–3817. https://doi.org/10.1021/acs.orglett.5b01776

    Article  CAS  Google Scholar 

  30. Yang T, Zhuang H, Lin X, Xiang JN, Elliott JD, Liu L, Ren F (2013) A catalyst-free N-H insertion/Mannich-type reaction cascade of a-nitrodiazoesters. Tetrahedron Lett 54:4159–4163. https://doi.org/10.1016/j.tetlet.2013.05.131

    Article  CAS  Google Scholar 

  31. Ollevier T, Lavie-Compin G (2004) Bismuth triflate-catalyzed mild and efficient epoxide opening by aromatic amines under aqueous conditions. Tetrahedron Lett 45(1):49–52. https://doi.org/10.1016/j.tetlet.2003.10.129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, Government of India (File No. EEQ/2018/000428). The authors thank CIF, Pondicherry University, for the NMR spectroscopic facility and DST-FIST for the ESI-MS facility and Single crystal XRD facility. Mohd. Aamir Bin Riyaz and Premkumar G acknowledge Pondicherry University for providing University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toka Swu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10008 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riyaz, M.A.B., Premkumar, G. & Swu, T. Bismuth-catalyzed arylation of ethyl glyoxylate with aniline via N–H insertion. Mol Divers 27, 167–175 (2023). https://doi.org/10.1007/s11030-022-10411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10411-x

Keywords

Navigation