Skip to main content
Log in

Reckoning apigenin and kaempferol as a potential multi-targeted inhibitor of EGFR/HER2-MEK pathway of metastatic colorectal cancer identified using rigorous computational workflow

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the past two decades, the treatment of metastatic colorectal cancer (mCRC) has been revolutionized as multiple cytotoxic, biological, and targeted drugs are being approved. Unfortunately, tumors treated with single targeted agents or therapeutics usually develop resistance. According to pathway-oriented screens, mCRC cells evade EGFR inhibition by HER2 amplification and/or activating Kras-MEK downstream signaling. Therefore, treating mCRC patients with dual EGFR/HER2 inhibitors, MEK inhibitors, or the combination of the two drugs envisaged to prevent the resistance development which eventually improves the overall survival rate. In the present study, we aimed to screen potential phytochemical lead compounds that could multi-target EGFR, HER2, and MEK1 (Mitogen-activated protein kinase kinase) using a computer-aided drug design approach that includes molecular docking, endpoint binding free energy calculation using MM-GBSA, ADMET, and molecular dynamics (MD) simulations. Docking studies revealed that, unlike all other ligands, apigenin and kaempferol exhibit the highest docking score against all three targets. Details of ADMET analysis, MM/GBSA, and MD simulations helped us to conclusively determine apigenin and kaempferol as potentially an inhibitor of EGFR, HER2, and MEK1 apigenin and kaempferol against mCRC at a systemic level. Additionally, both apigenin and kaempferol elicited antiangiogenic properties in a dose-dependent manner. Collectively, these findings provide the rationale for drug development aimed at preventing CRC rather than intercepting resistance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

EGFR:

Epidermal growth factor receptor

HER2:

Human epidermal growth receptor 2

RTK:

Receptor tyrosine kinase

MEK:

Mitogen-activated protein kinase

MM/GBSA:

Molecular mechanics energies/generalized Born and surface area continuum solvation

KMP:

Kaempferol

API:

Apigenin

Lap:

Lapatinib

Tra:

Trametinib

SMILES:

Simplified molecule input line entry specification

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

% HIA:

Human intestinal absorption (%)

CNS permeability:

Central nervous system permeability

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics 2019. Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Weinstein IB (2002) Cancer: addiction to oncogenes - the achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  4. Misale S, di Nicolantonio F, Sartore-Bianchi A et al (2014) Resistance to Anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov 4:1269–1280

    Article  CAS  PubMed  Google Scholar 

  5. Chong CR, Jänne PA (2013) The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19:1389–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94

    Article  CAS  PubMed  Google Scholar 

  7. Bozic I, Reiter JG, Allen B et al (2013) Evolutionary dynamics of cancer in response to targeted combination therapy. elife. https://doi.org/10.7554/eLife.00747

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stewart EL, Tan SZ, Liu G, Tsao MS (2015) Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Trans Lung Cancer Res 4:67–81

    CAS  Google Scholar 

  9. Takezawa K, Pirazzoli V, Arcila ME et al (2012) HER2 amplification: a potential mechanism of acquired resistance to egfr inhibition in EGFR -mutant lung cancers that lack the second-site EGFR T790M mutation. Cancer Discov 2:922–933. https://doi.org/10.1158/2159-8290.CD-12-0108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rexer BN, Ghosh R, Narasanna A et al (2013) Human breast cancer cells harboring a gatekeeper T798M mutation in HER2 overexpress EGFR ligands and are sensitive to dual inhibition of EGFR and HER2. Clin Cancer Res 19:5390–5401. https://doi.org/10.1158/1078-0432.CCR-13-1038

    Article  CAS  PubMed  Google Scholar 

  11. Lenferink AEG, Pinkas-Kramarski R, van de Poll MLM et al (1998) Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 17:3385–3397. https://doi.org/10.1093/emboj/17.12.3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Graus-Porta D, Beerli RR, Daly JM, Hynes NE (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16:1647–1655. https://doi.org/10.1093/emboj/16.7.1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  14. Rowinsky EK (2004) The erbB family: Targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors. Annu Rev Med 55:433–457

    Article  CAS  PubMed  Google Scholar 

  15. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536. https://doi.org/10.1038/nature11156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  CAS  PubMed  Google Scholar 

  17. Neuzillet C, Hammel P, Tijeras-Raballand A et al (2013) Targeting the Ras-ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev 32:147–162

    Article  CAS  PubMed  Google Scholar 

  18. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283:125–134

    Article  CAS  PubMed  Google Scholar 

  19. Baier A, Szyszka R (2020) Compounds from natural sources as protein kinase inhibitors. Biomolecules 10:1–30

    Article  Google Scholar 

  20. Pan MH, Lai CS, Wu JC, Ho CT (2011) Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol Nutr Food Res 55:32–45

    Article  CAS  PubMed  Google Scholar 

  21. Ye C, Li R, Xu L et al (2019) Effects of Baicalin on piglet monocytes involving PKC-MAPK signaling pathways induced by haemophilus parasuis. BMC Vet Res. https://doi.org/10.1186/s12917-019-1840-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Awasthee N, Rai V, Chava S et al (2019) Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 56:12–24

    Article  CAS  PubMed  Google Scholar 

  23. Zhang HW, Hu JJ, Fu RQ et al (2018) Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci Rep. https://doi.org/10.1038/s41598-018-29308-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yin B, Fang DM, Zhou XL, Gao F (2019) Natural products as important tyrosine kinase inhibitors. Eur J Med Chem. 182

  25. Jeong H, Phan ANH, Choi JW (2017) Anti-cancer effects of polyphenolic compounds in epidermal growth factor receptor tyrosine kinase inhibitor-resistant non-small cell lung cancer. Pharmacogn Mag 13:595–599. https://doi.org/10.4103/pm.pm_535_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan H, Ma Q, Cui H et al (2017) How can synergism of traditional medicines benefit from network pharmacology? Molecules 22:1135

    Article  PubMed Central  Google Scholar 

  27. Min X, Akella R, He H et al (2009) The structure of the MAP2K MEK6 reveals an autoinhibitory dimer. Struct (London, England : 1993) 17:96–104. https://doi.org/10.1016/j.str.2008.11.007

    Article  CAS  Google Scholar 

  28. Borrelli N, Panebianco F, Condello V et al (2019) Characterization of activating mutations of the MEK1 Gene in papillary thyroid carcinomas. Thyroid : Offic J Am Thyroid Assoc 29:1279–1285. https://doi.org/10.1089/thy.2019.0065

    Article  CAS  Google Scholar 

  29. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  30. Broccatelli F, Salphati L, Plise E et al (2016) Predicting passive permeability of drug-like molecules from chemical structure: where are we? Mol Pharm 13:4199–4208. https://doi.org/10.1021/acs.molpharmaceut.6b00836

    Article  CAS  PubMed  Google Scholar 

  31. Press B, di Grandi D (2008) Permeability for intestinal absorption: caco-2 assay and related issues. Curr Drug Metab 9:893–900. https://doi.org/10.2174/138920008786485119

    Article  CAS  PubMed  Google Scholar 

  32. Al-Nour MY, Ibrahim MM, Elsaman T (2019) Ellagic acid, kaempferol, and quercetin from acacia nilotica: promising combined drug with multiple mechanisms of action. Current Pharmacol Reports 5:255–280. https://doi.org/10.1007/s40495-019-00181-w

    Article  CAS  Google Scholar 

  33. Murugesan S, Kottekad S, Crasta I, et al (2021) Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants - Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) - A molecular docking and simulation study. Computers in biology and medicine. 136: 104683. Doi: https://doi.org/10.1016/j.compbiomed.2021.104683

  34. Tang D, Chen K, Huang L, Li J (2017) Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opinion Drug Metab Toxicol 13:323–330. https://doi.org/10.1080/17425255.2017.1251903

    Article  CAS  Google Scholar 

  35. Seo H-S, Ku JM, Choi HS et al (2017) Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol Rep 38:715–724. https://doi.org/10.3892/or.2017.5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conseil G, Baubichon-Cortay H, Dayan G et al (1998) Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci USA 95:9831–9836. https://doi.org/10.1073/pnas.95.17.9831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oso BJ, Oyewo EB, Oladiji AT (2019) Influence of ethanolic extracts of dried fruit of Xylopia aethiopica (Dunal) A. Rich on haematological and biochemical parameters in healthy Wistar rats. Clin Phytosci 5:1–10. https://doi.org/10.1186/s40816-019-0104-4

    Article  Google Scholar 

  38. Rheault TR, Caferro TR, Dickerson SH et al (2009) Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors. Bioorg Med Chem Lett 19:817–820. https://doi.org/10.1016/j.bmcl.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki N, Shiota T, Watanabe F et al (2011) Synthesis and evaluation of novel pyrimidine-based dual EGFR/Her-2 inhibitors. Bioorg Med Chem Lett 21:1601–1606. https://doi.org/10.1016/j.bmcl.2011.01.119

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki N, Shiota T, Watanabe F et al (2012) Discovery of novel 5-alkynyl-4-anilinopyrimidines as potent, orally active dual inhibitors of EGFR and Her-2 tyrosine kinases. Bioorg Med Chem Lett 22:456–460. https://doi.org/10.1016/j.bmcl.2011.10.103

    Article  CAS  PubMed  Google Scholar 

  41. Xu G, Searle LL, Hughes T, v, et al (2008) Discovery of novel 4-amino-6-arylaminopyrimidine-5-carbaldehyde oximes as dual inhibitors of EGFR and ErbB-2 protein tyrosine kinases. Bioorg Med Chem Lett 18:3495–3499. https://doi.org/10.1016/j.bmcl.2008.05.024

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Guo C, Zhao H et al (2012) Synthesis and biological evaluation of 4-[3-chloro-4-(3-fluorobenzyloxy) anilino]-6-(3-substituted-phenoxy)pyrimidines as dual EGFR/ErbB-2 kinase inhibitors. Bioorg Med Chem 20:877–885. https://doi.org/10.1016/j.bmc.2011.11.056

    Article  CAS  PubMed  Google Scholar 

  43. Xu G, Abad MC, Connolly PJ et al (2008) 4-Amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors. Bioorg Med Chem Lett 18:4615–4619. https://doi.org/10.1016/j.bmcl.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  44. Hughes T, v., Xu G, Wetter SK, et al (2008) A novel 5-[1,3,4-oxadiazol-2-yl]-N-aryl-4,6-pyrimidine diamine having dual EGFR/HER2 kinase activity: design, synthesis, and biological activity. Bioorg Med Chem Lett 18:4896–4899. https://doi.org/10.1016/j.bmcl.2008.07.057

    Article  CAS  PubMed  Google Scholar 

  45. Kawakita Y, Seto M, Ohashi T et al (2013) Design and synthesis of novel pyrimido[4,5-b]azepine derivatives as HER2/EGFR dual inhibitors. Bioorg Med Chem 21:2250–2261. https://doi.org/10.1016/j.bmc.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  46. Tariq K, Ghias K (2016) Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 13:120–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turanli B, Karagoz K, Gulfidan G et al (2019) A network-based cancer drug discovery: from integrated multi-omics approaches to precision medicine. Curr Pharm Des 24:3778–3790. https://doi.org/10.2174/1381612824666181106095959

    Article  CAS  Google Scholar 

  48. Fan Q, Guo L, Guan J et al (2020) Network pharmacology-based study on the mechanism of Gegen Qinlian decoction against colorectal cancer. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2020/8897879

    Article  PubMed  PubMed Central  Google Scholar 

  49. Szklarczyk D, Santos A, von Mering C et al (2016) STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384. https://doi.org/10.1093/nar/gkv1277

    Article  CAS  PubMed  Google Scholar 

  50. Davies M, Nowotka M, Papadatos G et al (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 43:W612–W620. https://doi.org/10.1093/nar/gkv352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang X, Shen Y, Wang S et al (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45:W356–W360. https://doi.org/10.1093/nar/gkx374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Piñero J, Bravo Á, Queralt-Rosinach N et al (2017) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45:D833–D839. https://doi.org/10.1093/nar/gkw943

    Article  CAS  PubMed  Google Scholar 

  53. Chin CH, Chen SH, Wu HH et al (2014) cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lieu C, Kopetz S (2010) The Src family of protein tyrosine kinases: a new and promising target for colorectal cancer therapy. Clin Colorectal Cancer 9:89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Slattery ML, Mullany LE, Wolff RK et al (2019) The p53-signaling pathway and colorectal cancer: interactions between downstream p53 target genes and miRNAs. Genomics 111:762–771. https://doi.org/10.1016/j.ygeno.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  56. Cheung LW, Mills GB (2016) Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics 17:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9

  58. Narayanankutty A (2019) PI3K/ Akt/ mTOR pathway as a therapeutic target for colorectal cancer: a review of preclinical and clinical evidence. Curr Drug Targets 20:1217–1226. https://doi.org/10.2174/1389450120666190618123846

    Article  CAS  PubMed  Google Scholar 

  59. Martinelli E, Morgillo F, Troiani T, Ciardiello F (2017) Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev 53:61–69

    Article  CAS  PubMed  Google Scholar 

  60. Wagle N, Emery C, Berger MF et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096. https://doi.org/10.1200/JCO.2010.33.2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pandurangan A, kumar, Divya T, Kumar K, et al (2018) Colorectal carcinogenesis: insights into the cell death and signal transduction pathways: a review. World Journal of Gastrointestinal Oncology 10:244–259

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29:1275–1288

    Article  PubMed  Google Scholar 

  63. Press MF, Lenz H-J (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67:2045–2075. https://doi.org/10.2165/00003495-200767140-00006

    Article  CAS  PubMed  Google Scholar 

  64. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discovery 6:273–286. https://doi.org/10.1038/nrd2115

    Article  CAS  PubMed  Google Scholar 

  65. J T, (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Molecular cancer research : MCR 5:203–220. https://doi.org/10.1158/1541-7786.MCR-06-0404

    Article  CAS  Google Scholar 

  66. E S, A G, K G, S G, (2017) Plant flavone apigenin: an emerging anticancer agent. Current pharmacology reports 3:423–446. https://doi.org/10.1007/S40495-017-0113-2

    Article  Google Scholar 

  67. H L, GO R, L L, et al (2009) Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer 61:554–563. https://doi.org/10.1080/01635580802666281

    Article  CAS  Google Scholar 

  68. Sinha S, Patel S, Athar M et al (2019) Structure-based identification of novel sirtuin inhibitors against triple negative breast cancer: an in silico and in vitro study. Int J Biol Macromol 140:454–468. https://doi.org/10.1016/j.ijbiomac.2019.08.061

    Article  CAS  PubMed  Google Scholar 

  69. Parmar P, Rao P, Sharma A et al (2021) Meticulous assessment of natural compounds from NPASS database for identifying analogue of GRL0617, the only known inhibitor for SARS-CoV2 papain-like protease (PLpro) using rigorous computational workflow. Mol Diversity. https://doi.org/10.1007/s11030-021-10233-3

    Article  Google Scholar 

  70. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bowers KJ, Chow E, Xu H, et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06

  72. Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666. https://doi.org/10.1021/ja00214a001

    Article  CAS  PubMed  Google Scholar 

  73. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  76. Raudvere U, Kolberg L, Kuzmin I et al (2019) G:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198. https://doi.org/10.1093/nar/gkz369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sinha S, Khan S, Shukla S et al (2016) Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. Int J Biochem Cell Biol 77:41–56. https://doi.org/10.1016/j.biocel.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  79. Ribatti D (2008) R RE EV VI IE EW W The chick embryo chorioallantoic membrane in the study of tumor angiogenesis. Rom J Morphol Embryol 49:131–135

    CAS  PubMed  Google Scholar 

  80. Demir R, Peros G, Hohenberger W (2011) Definition of the “Drug-Angiogenic-Activity-Index” that allows the quantification of the positive and negative angiogenic active drugs: a study based on the chorioallantoic membrane model. Pathol Oncol Res 17:309–313. https://doi.org/10.1007/S12253-010-9318-Y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge our host institute, B.V. Patel Pharmaceutical Education Research, and Development (PERD) Centre for providing us with the facilities for our work. We also acknowledge the Department of chemistry, Gujarat University and Computational Chemistry Group (CCG@CUG), Central University of Gujarat, Gandhinagar, for providing computational resources.

Funding

This work was supported by the Department of Science & Technology (DST), Ministry of Science and Technology, Government of India for INSPIRE fellowship (Grant no. IF190211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeta Shrivastava.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 684 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Sinha, S., Rathaur, P. et al. Reckoning apigenin and kaempferol as a potential multi-targeted inhibitor of EGFR/HER2-MEK pathway of metastatic colorectal cancer identified using rigorous computational workflow. Mol Divers 26, 3337–3356 (2022). https://doi.org/10.1007/s11030-022-10396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10396-7

Keywords

Navigation