Skip to main content
Log in

Synthesis of novel pyrano[2,3-f]chromene-dione derivatives using phosphoric acid-functionalized silica-coated Fe3O4 nanoparticles as a new reusable solid acid nanocatalyst

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this research, the synthesis of novel indeno[1,2-b]pyrano[2,3-f]chromene-2,12(13H)-dione derivatives in the presence of a newly introduced magnetically recoverable nanosolid acid catalyst is reported. At the first, phosphoric acid-functionalized silica-coated Fe3O4 nanoparticles (Fe3O4@SiO2–(CH2)3OPO3H2) were prepared and well characterized using infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and energy-dispersive X-ray spectroscopy (EDS) techniques. Then, the catalytic activity of the prepared Fe3O4@ SiO2–(CH2)3OPO3H2 nanocatalyst was investigated for the synthesis of novel indeno[1,2-b]pyrano[2,3-f]chromene-2,12(13H)-dione derivatives via a one-pot and three-component condensation between 5,7-dihydroxy-4-methylcoumarin, indane-1, 3-dione, and various aromatic aldehydes under solvent-free condition. All the products are unknown, and their characterization was performed with the spectral data information obtained from their FT-IR, 1H and 13CNMR, elemental analysis, and their melting points. The reusability study of the introduced nanosolid acid catalyst showed that the catalytic stability is almost completely remained up to five consecutive runs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. Motokura K, Ding S, Usui K, Kong Y (2018) ACS Catal 11(2021):11985–11991

    Google Scholar 

  2. Gill CG, Price BA, Jones WJ (2007) J Catal 251:145–152

    Article  CAS  Google Scholar 

  3. Lin Y, Chen H, Lin K, Chen B, Chiou C (2011) J Environ Sci 23:44–50

    Article  CAS  Google Scholar 

  4. Mahmoodi NM, Khorramfar S, Najafi F (2011) Desalination 279:61–68

    Article  CAS  Google Scholar 

  5. Kiasat AR, Nazari S (2012) J Mol Catal A: Chem 365:80–86

    Article  CAS  Google Scholar 

  6. Khoobi M, Mamani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani AR, Shafiee A (2012) J Mol Catal A: Chem 359:74–80

    Article  CAS  Google Scholar 

  7. Costa VV, Jacinto MJ, Rossi LM, Landers R, Gusevskaya EV (2011) J Catal 282:209–214

    Article  CAS  Google Scholar 

  8. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  9. Xu Z, Pupek K, Suling W, Enache L, Flavin M (2006) Bioorg Med Chem 14:4610

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Fong W, Zhang J, Leung C, Kwong H, Yang M, Li D, Cheung H (2003) Eur J Pharmacol 473:9

    Article  CAS  PubMed  Google Scholar 

  11. Sethna SM, Shah NM (1945) Chem Rev 36:1

    Article  CAS  Google Scholar 

  12. Neyts J, Clercq ED, Singha R, Chang YH, Das AR, Chakraborty SK, Hong SC, Hsu MH, Hwu JR (2009) J Med Chem 52:1486

    Article  CAS  PubMed  Google Scholar 

  13. Hwu JR, Singha R, Hong SC, Chang YH, Das AR, Vliegen I, Clercq ED, Neyts J (2008) Antiviral Res 77:157

    Article  CAS  PubMed  Google Scholar 

  14. Sharma RC, Parashar RK (1988) J Inorg Biochem 32:163

    Article  CAS  PubMed  Google Scholar 

  15. Kayser O, Kolodziej HZ, Naturforsch ZC (1999) Biosci 54:169

    CAS  Google Scholar 

  16. Garazd YL, Kornienko EM, Maloshtan LN, Garazd MM, Khilya VP (2005) Chem Nat Prod 41:508

    CAS  Google Scholar 

  17. Kontogiorgis CA, Hadjipavlou-Litina DJ (2005) J Med Chem 48:6400

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki M, Nakagawa-Goto K, Nakamura S, Tokuda H, Morris-Natschke SL, Kozuka M, Nishino H, Lee KH (2006) Pharm Biol 44:178

    Article  Google Scholar 

  19. Parker KA, Mindt TL (2011) Tetrahedron 67:9779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchlovic M, Man S, Kislitson K, Mathot C, Potacek M (2010) Tetrahedron 66:1821

    Article  CAS  Google Scholar 

  21. Zarganes-Tzitzikas T, Terzidis MA, Stephanidou-Stephanatou J, Tsoleridis CA, Kostakis GE (2011) J Org Chem 76:9008

    Article  CAS  PubMed  Google Scholar 

  22. Taib LA, Keshavarz M (2021) Res Chem Intermed 47:2487–2505

    Article  CAS  Google Scholar 

  23. Karami B, Mohammadpour-Dehghani F, Eskandari K (2012) Croat Chem Acta 85:147

    Article  CAS  Google Scholar 

  24. Keshavarz M, Zarei Ahmady A, Vaccaro L, Kardani M (2018) Molecules 23(2018):330–346

    Article  PubMed Central  Google Scholar 

  25. Keshavarz M, Tabatabaee M, Shahabi M, Yazdankish E (2021) Polycycl Aromat Compd 41:427–439

    Article  CAS  Google Scholar 

  26. Keshavarz M (2016) J Iran Chem Soc 13:553–561

    Article  CAS  Google Scholar 

  27. Keshavarz M, Iravani N, Ahmadi Azqhandi MH, Nazari S (2016) Res Chem Intermed 42:4591–4604

    Article  CAS  Google Scholar 

  28. Taib LA, Keshavarz M, Parhami A (2021) React Kinet Mech Catal 133:383–403

    Article  CAS  Google Scholar 

  29. Karami B, Farahi M, Farmani N, MohamadiTanuraghaj H (2016) New J Chem 40:1715–1719

    Article  CAS  Google Scholar 

  30. Khosravian F, Karami B, Farahi M (2017) New J Chem 41:11584–11590

    Article  CAS  Google Scholar 

  31. Farahi M, Karami B, Keshavarz R, Khosravian F (2017) RSC Adv 7:46644–46650

    Article  CAS  Google Scholar 

  32. Arian F, Keshavarz M, Sanaeishoar H, Hasanzadeh N (2021) J Mol Struct 1229:129599

    Article  CAS  Google Scholar 

  33. Rohani L, Karami B, Farahi M (2021) J Chin Chem Soc 68:888–892

    Article  CAS  Google Scholar 

  34. Akrami S, Karami B, Farahi M (2020) J Heterocycl Chem 57:2446–2454

    Article  CAS  Google Scholar 

  35. Karami B, Khodabakhshi S, Eskandari K (2012) Tetrahedron Lett 53:1445–1446

    Article  CAS  Google Scholar 

  36. Mascolo MC, Pei Y, Ring TA (2013) Materials 6:5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stober W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62

    Article  Google Scholar 

  38. Elmekawy AA, Sweeney JB, Brown DR (2015) Catal Sci Technol 5:690–696

    Article  CAS  Google Scholar 

  39. Nasseri MA, Zakerinasab B, Samieadel MM (2014) RSC Adv 4:41753–41762

    Article  CAS  Google Scholar 

  40. Yang P, Quan Z, Li C, Kang X, Lian H, Lin J (2008) Biomaterials 29:4341–4347

    Article  CAS  PubMed  Google Scholar 

  41. Gupta K, Agarwal S, Saleh TA (2011) Water Res 45:2207–2212

    Article  CAS  PubMed  Google Scholar 

  42. Sharma S, Gupta A, Chik SMST, Kee CG, Mistry BM, Kim DH, Sharma G (2017) Int J Biol Macromol 104:189–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support of this work by Yasouj University, Yasouj, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahador Karami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighimehr, I., Karami, B., Farahi, M. et al. Synthesis of novel pyrano[2,3-f]chromene-dione derivatives using phosphoric acid-functionalized silica-coated Fe3O4 nanoparticles as a new reusable solid acid nanocatalyst. Mol Divers 26, 3325–3336 (2022). https://doi.org/10.1007/s11030-022-10393-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10393-w

Keywords

Navigation