Skip to main content
Log in

Utility of arylglyoxal hydrates in synthesis of 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines and 5-aryl-2-phenyl-4H-imidazol-4-imines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Nucleophilic substitution reaction for arylglyoxal hydrates (AGs-hydrate) was studied via their reaction with some mono- and multi-nucleophilic reagents in the presence of sodium ethoxide as basic catalyst. Thus, reaction of phenylglyoxal hydrate (1a) with hydrogen sulfide and/or ammonium acetate afforded the corresponding 2-hydroxy-2-mercapto-1-phenylethanone (2) and 2-oxo-2-phenylethanimidamide (3), respectively. Heterocyclization reaction of AGs-hydrate 1a-f with 1-(1H-benzimidazol-2-yl)guanidine (4) gave 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines 5a-f. Also, a series of 5-aryl-2-phenyl-4H-imidazol-4-imines 7a–d was synthesized via one-pot multicomponent reaction of AGs-hydrate 1a-d, benzonitrile (6) and ammonium acetate. Imidazole-4-imines 7a-d can be also prepared using other route via multicomponent reaction of AGs-hydrate 1a-d, benzenecarboximidamide acetate (8) and ammonium acetate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB (2020) A review on recent advances in nitrogen- containing molecules and their biological applications. Molecules 25:1909. https://doi.org/10.3390/molecules25081909

    Article  CAS  PubMed Central  Google Scholar 

  2. Siwach A, Verma PK (2021) Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem 15:12. https://doi.org/10.1186/s13065-020-00730-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo FY, Zheng CJ, Wang M, Ai J, Han LY, Yang L, Lu YF, Yang YX, Piao MG, Piao H-R, Jin C-M, Jin CH (2021) Synthesis and antimicrobial activity evaluation of imidazole-fused imidazo[2,1-b][1,3,4]thiadiazole analogues. Chem Med Chem 16:2354–2365. https://doi.org/10.1002/cmdc.202100122

    Article  CAS  Google Scholar 

  4. Adib M, Peytam F, Shourgeshty R, Mohammadi-Khanaposhtani M, Jahani M, Imanparast S, Faramarzi MA, Larijani B, Moghadamnia AA, Esfahani EN, Bandarian F, Mahdavi M (2019) Design and synthesis of new fused carbazole-imidazole derivatives as antidiabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg Med Chem Lett 29:713–718. https://doi.org/10.1016/j.bmcl.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  5. Farooq S, Haq I-U, Ullah N (2021) Synthesis, characterization and biological evaluation of N-Mannich base derivatives of 2-phenyl-2-imidazoline as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents Arabian Journal of Chemistry 14: 103050. DOI: https://doi.org/10.1016/j.arabjc.2021.103050

  6. Mermer A, Keles T, Sirin Y (2021) Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg Chem 114:105076. https://doi.org/10.1016/j.bioorg.2021.105076

    Article  CAS  PubMed  Google Scholar 

  7. Sharma P, LaRosa C, Antwi J, Govindarajan R, Werbovetz KA (2021) Imidazoles as potential anticancer agents: An update on recent studies. Molecules 26:4213. https://doi.org/10.3390/molecules26144213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alghamdi SS, Suliman RS, Almutairi K, Kahtani K, Aljatli D (2021) Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des Devel Ther 15:3289–3312. https://doi.org/10.2147/DDDT.S307113

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shaaban S, Abdel-Wahab BF (2016) Groebke–Blackburn–Bienaymé multicomponent reaction: emerging chemistry for drug discovery. Mol Divers 20:233–254. https://doi.org/10.1007/s11030-015-9602-6

    Article  CAS  PubMed  Google Scholar 

  10. Quin LD, Tyrell JA (2010) Fundamentals of heterocyclic chemistry: Importance in nature and in the synthesis of pharmaceuticals, L. D. Quin and J. A. Tyrell, Wiley, Hoboken, NJ.

  11. Sonawane RK, Mohite SK (2021) Heterocyclic bridgehead nitrogen atom system: Review on [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole and its pharmacological screening. Asian j res chem 2021:217–220. https://doi.org/10.52711/0974-4150.2021.00038

    Article  Google Scholar 

  12. Lacerda RB, de Lima CKF, da Silva LL, Romeiro NC, Miranda ALP, Barreiro EJ, Fraga CAM (2009) Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg Med Chem 17:74–84. https://doi.org/10.1016/j.bmc.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  13. Demchenko S, Lesyk R, Yadlovskyi O, Zuegg J, Elliott AG, Drapak I, Fedchenkova Y, Suvorova Z, Demchenko A (2021) Synthesis, antibacterial and antifungal activity of new 3-aryl-5H-pyrrolo[1,2-a]imidazole and 5H-imidazo[1,2-a]azepine quaternary salts. Molecules 26:4253. https://doi.org/10.3390/molecules26144253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shukla NM, Salunke DB, Yoo E, Mutz CA, Balakrishna R, David SA (2012) Antibacterial activities of Groebke–Blackburn–Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg Med Chem 20:5850–5863. https://doi.org/10.1016/j.bmc.2012.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shukla P, Deswal D, Pandit M, Latha N, Mahajan D, Srivastava T, Narula AK (2021) Exploration of novel TOSMIC tethered imidazo[1,2-a]pyridine compounds for the development of potential antifungal drug candidate. Drug Dev Res 2021:1–19. https://doi.org/10.1002/ddr.21883

    Article  CAS  Google Scholar 

  16. Tian Y, Du D, Rai D, Wang L, Liu H, Zhan P, Clercq ED, Pannecouque C, Liu X (2014) Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: Design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives. Bioorg Med Chem 22:2052–2059. https://doi.org/10.1016/j.bmc.2014.02.029

    Article  CAS  PubMed  Google Scholar 

  17. Mani GS, Shaik SP, Tangella Y, Bale S, Godugu C, Kamal A (2017) A facile I2-catalyzed synthesis of imidazo[1,2-a]pyridines via sp3 C-H functionalization of azaarenes and evaluation of anticancer activity. Org Biomol Chem 15:6780. https://doi.org/10.1039/c7ob01384a

    Article  CAS  PubMed  Google Scholar 

  18. Singh I, Luxami V, Paul K (2019) Effective synthesis of benzimidazoles-imidazo[1,2-a]pyrazine conjugates: A comparative study of mono-and bis-benzimidazoles for antitumor activity. Eur J Med Chem 180: 546e561. DOI: https://doi.org/10.1016/j.ejmech.2019.07.042

  19. Rasool SR, Aljamali NM, Al-Zuhairi AJ (2020) Guanine substituted heterocyclic derivatives as bioactive compounds. Biochem Cell Arch 20(2): 3651–3655. https://connectjournals.com/03896.2020.20.3651

  20. El-feky SA, Thabet HKh, Mudawi MME (2015) Synthesis of novel fused pyrimidines and imidazoles as potential analgesics from 2-amino-4-substituted-striazino[1,2-a]benzimidazoles. Orient J Chem 31(2):709–718. https://doi.org/10.13005/ojc/310213

    Article  CAS  Google Scholar 

  21. Hranjec M, Pavlovic G, Karminski-Zamola G (2012) Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2-a]benzimidazoles. J Mol Struct 1007:242–251. https://doi.org/10.1016/j.molstruc.2011.10.054

    Article  CAS  Google Scholar 

  22. Dolzhenko AV, Chui W-K (2006) Synthesis of 2-amino-s-triazino[1,2-a]benzimidazoles as potential antifolates from 2-guanidino- and 2-guanidino-5-methylbenzimidazoles. J Heterocycl Chem 43:95. https://doi.org/10.1002/jhet.5570430115

    Article  CAS  Google Scholar 

  23. Chen J, Sun Z, Xiao F, Deng G-J (2020) Base-promoted aerobic oxidative synthesis of fused 1,3,5-triazines under metal-free conditions. Green Chem 22:6778. https://doi.org/10.1039/d0gc02691c

    Article  CAS  Google Scholar 

  24. Zeng M, Xie ZP, Cui D-M, Zhang C (2018) Ruthenium-catalyzed synthesis of 1,3,5-triazin-2(1H)-ones and dihydro[1,3,5]triazino[1,2-a]-benzimidazoles from alcohols and guanides. New J Chem 42:11905. https://doi.org/10.1039/c8nj02035c

    Article  CAS  Google Scholar 

  25. Wang M, Meng Y, Wei W, Wu J, Yu W, Chang J (2018) Iodine/copper(I)-catalyzed direct annulation of N-benzimidazolyl amidines with aldehydes for the synthesis of ortho-fused 1,3,5-triazines. Adv Synth Catal 360:86–92. https://doi.org/10.1002/adsc.201701126

    Article  CAS  Google Scholar 

  26. Hajri A, Abderrahim R (2011) Facile synthesis of 1-amino[1,3,5]triazno[1,2-a]benzimidazolo-2-one derivatives. Synth Commun 41:2920–2926. https://doi.org/10.1080/00397911.2010.515366

    Article  CAS  Google Scholar 

  27. Hoesl CE, Nefzi A, Houghten RA (2003) Parallel solid-phase synthesis of 2-imino-4-oxo-1,3,5-triazino[1,2-a]benzimidazoles via tandem aza-wittig/heterocumulene-mediated annulation reaction. J Comb Chem 5:155–160. https://doi.org/10.1021/cc020077e

    Article  CAS  PubMed  Google Scholar 

  28. Javahershenas R, Khalafy J, Prager RH (2019) The application of arylglyoxals in the synthesis of pyrrolo[2,3-d]pyrimidines via multicomponent reactions. J Chem Rev 1(3):233–242. https://doi.org/10.33945/SAMI/JCR.2019.3.4

    Article  Google Scholar 

  29. Moustafa AH, Hussein BRM (2021) Reaction of arylglyoxal hydrate derivatives with cyanoguanidine under benzilic rearrangement effect. Monatsh Chem 152:1285–1290. https://doi.org/10.1007/s00706-021-02838-z

    Article  CAS  Google Scholar 

  30. Eftekhari-Sis B, Zirak M, Akbari A (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem Rev 113:2958–3043. https://doi.org/10.1021/cr300176g

    Article  CAS  PubMed  Google Scholar 

  31. Rayudu SV, Karmakar D, Kumar P (2019) Water-acetic acid mediated an efficient one-pot eco-friendly synthesis of novel bis-isoxazolopyrroloquinoline derivatives. Tetrahedron Lett 60:151025. https://doi.org/10.1016/j.tetlet.2019.151025

    Article  CAS  Google Scholar 

  32. Gong J, Peshkov AA, Yu J, Amandykova S, Gimnkhan A, Huang J, Kashtanov S, Pereshivko OP, Peshkov VA (2020) Three-component reaction of azulene, aryl glyoxal and 1,3-dicarbonyl compound for the synthesis of various azulene derivatives. RSC Adv 10:10113–10117. https://doi.org/10.1039/D0RA00356E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rezaei M, Bayat M, Notash B (2020) Synthesis of fused hydroxy dihydropyrroles and unexpected dihydropyrazine and dihydroquinoxaline derivatives based on heterocyclic ketene aminals. J Heterocycl Chem 57:880–891

    Article  CAS  Google Scholar 

  34. Krechl J, Smrčková S, Pavlíková F, Kuthan J (1989) p-Substituted benzamidinium carboxylates. Collect Czech Chem Commun 54:2415–2424. https://doi.org/10.1135/cccc19892415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific Grant from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr H. Moustafa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, B.R.M., Moustafa, A.H. Utility of arylglyoxal hydrates in synthesis of 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines and 5-aryl-2-phenyl-4H-imidazol-4-imines. Mol Divers 26, 3185–3191 (2022). https://doi.org/10.1007/s11030-022-10379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10379-8

Keywords

Navigation