Skip to main content
Log in

In silico design and in vitro assessment of anti-Helicobacter pylori compounds as potential small-molecule arginase inhibitors

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Related to a variety of gastrointestinal disorders ranging from gastric ulcer to gastric adenocarcinoma, the infection caused by the gram-negative bacteria Helicobacter pylori (H. pylori) poses as a great threat to human health; hence, the search for new treatments is a global priority. The H. pylori arginase (HPA) protein has been widely studied as one of the main virulence factors of this bacterium, being involved in the prevention of nitric oxide-mediated bacterial cell death, which is a central component of innate immunity. Given the growing need for the development of new drugs capable of combating the infection by H. pylori, the present work describes the search for new HPA inhibitors, using virtual screening techniques based on molecular docking followed by the evaluation of the proposed modes of interaction at the HPA active site. In vitro studies of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), followed by cytotoxicity activity in gastric adenocarcinoma and non-cancer cells, were performed. The results highlighted compounds 6, 11, and 13 as potential inhibitors of HPA; within these compounds, the results indicated 13 presented an improved activity toward H. pylori killing, with MIC and MBC both at 64 µg/mL. Moreover, compound 13 also presented a selectivity index of 8.3, thus being more selective for gastric adenocarcinoma cells compared to the commercial drug cisplatin. Overall, the present work demonstrates the search strategy based on in silico and in vitro techniques is able to support the rational design of new anti-H. pylori drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ADME:

Absorption, distribution, metabolism, and excretion

AGS:

Gastric adenocarcinoma

ATCC:

American type culture collection

AUC:

Areas under the ROC curves

BHI:

Brain heart infusion

DSV:

Discovery studio visualizer

EF 1%:

Enrichment factor of 1%

H. pylori :

Helicobacter pylori

HPA:

Helicobacter pylori arginase

IC50 :

Half maximal inhibitory concentration

MBC:

Minimum bactericidal concentration

MIC:

Minimum inhibitory concentration

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PDB:

Protein data bank

QSAR:

Quantitative structure–activity relationship

ROC:

Receiver operating characteristic

SI:

Selectivity indexes

TP:

Tanimoto prioritization

References

  1. World Health Organization (WHO) (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed. http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/. Accessed 1 May 2020

  2. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Howden CW, Chey WD, Vakil NB (2014) Clinical rationale for confirmation testing after treatment of Helicobacter pylori infection: implications of rising antibiotic resistance. Gastroenterol Hepatol 10:1–19

    Google Scholar 

  4. The Global Cancer Observatory (2020) International agency for research on cancer—IARC. https://gco.iarc.fr/today/data/factsheets/cancers/7-Stomach-fact-sheet.pdf. Accessed 31 Aug 2021

  5. Polk DB, Peek RM (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10:403–414. https://doi.org/10.1038/nrc2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Gastroenterology Rev 14:26–38. https://doi.org/10.5114/pg.2018.80001

    Article  CAS  Google Scholar 

  7. Schulz C, Kupčinskas J (2020) Review—Helicobacter pylori and non-malignant upper gastro-intestinal diseases. Helicobacter 25:e12738. https://doi.org/10.1111/hel.12738

    Article  PubMed  Google Scholar 

  8. Wroblewski LE, Peek RM (2016) Helicobacter pylori: Pathogenic enablers—toxic relationships in the stomach. Nat Rev Gastroenterol Hepatol 13:317–318. https://doi.org/10.1038/nrgastro.2016.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chey WD, Leontiadis GI, Howden CW, Moss SF (2017) ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol 112:212–239. https://doi.org/10.1038/ajg.2016.563

    Article  PubMed  Google Scholar 

  10. Chu A, Wang D, Guo Q et al (2020) Molecular detection of H. pylori antibiotic-resistant genes and molecular docking analysis. FASEB J 34:610–618. https://doi.org/10.1096/fj.201900774R

    Article  CAS  PubMed  Google Scholar 

  11. Safavi M (2016) Treatment of Helicobacter pylori infection: Current and future insights. World J Clin Cases 4:5–19. https://doi.org/10.12998/wjcc.v4.i1.5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thung I, Aramin H, Vavinskaya V et al (2016) Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther 43:514–533. https://doi.org/10.1111/apt.13497

    Article  CAS  PubMed  Google Scholar 

  13. Hooi JKY, Lai WY, Ng WK et al (2017) Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153:420–429. https://doi.org/10.1053/j.gastro.2017.04.022

    Article  PubMed  Google Scholar 

  14. Gobert AP, Cheng Y, Wang J-Y et al (2002) Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol 168:4692–4700. https://doi.org/10.4049/jimmunol.168.9.4692

    Article  CAS  PubMed  Google Scholar 

  15. Wroblewski LE, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739. https://doi.org/10.1128/CMR.00011-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gobert AP, Mersey BD, Cheng Y et al (2002) Cutting edge: urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J Immunol 168:6002–6006. https://doi.org/10.4049/jimmunol.168.12.6002

    Article  CAS  PubMed  Google Scholar 

  17. Gobert AP, McGee DJ, Akhtar M et al (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA 98:13844–13849. https://doi.org/10.1073/pnas.241443798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodrigues RP, Ardisson JS, Gonçalves RDCR et al (2020) Search for potential inducible nitric oxide synthase inhibitors with favorable ADMET profiles for the therapy of Helicobacter pylori infections. Curr Top Med Chem 19:2795–2804. https://doi.org/10.2174/1568026619666191112105650

    Article  CAS  Google Scholar 

  19. Fiori-Duarte AT, Rodrigues RP, Kitagawa RR, Kawano DF (2019) Insights into the design of inhibitors of the urease enzyme—a major target for the treatment of Helicobacter pylori infections. Curr Med Chem 26:1–15. https://doi.org/10.2174/0929867326666190301143549

    Article  CAS  Google Scholar 

  20. Dutta A, Mazumder M, Alam M et al (2019) Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function. Biochem J 476:3595–3614. https://doi.org/10.1042/BCJ20190545

    Article  CAS  PubMed  Google Scholar 

  21. Pudlo M, Demougeot C, Girard-Thernier C (2017) Arginase inhibitors: a rational approach over one century: an exhaustive review of arginase inhibitors. Med Res Rev 37:475–513. https://doi.org/10.1002/med.21419

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava A, Sau AK (2010) Biochemical studies on Helicobacter pylori arginase: Insight into the difference in activity compared to other arginases. IUBMB Life 62:906–915. https://doi.org/10.1002/iub.401

    Article  CAS  PubMed  Google Scholar 

  23. Azizian H, Bahrami H, Pasalar P, Amanlou M (2010) Molecular modeling of Helicobacter pylori arginase and the inhibitor coordination interactions. J Mol Graph Model 28:626–635. https://doi.org/10.1016/j.jmgm.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  24. López-López E, Barrientos-Salcedo C, Prieto-Martínez FD, Medina-Franco JL (2020) In silico tools to study molecular targets of neglected diseases: inhibition of TcSir2rp3, an epigenetic enzyme of Trypanosoma cruzi. In: Advances in protein chemistry and structural biology. Elsevier, pp 203–229. https://doi.org/10.1016/bs.apcsb.2020.04.001

  25. Berman HM (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hovey JG, Watson EL, Langford ML et al (2007) Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates. BMC Microbiol 7:26. https://doi.org/10.1186/1471-2180-7-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bourne PE, Weissig H (2003) Structural bioinformatics. Wiley-Liss, New Jersey

    Book  Google Scholar 

  28. Eswar N, Webb B, Marti-Renom MA et al (2006) Comparative Protein Structure Modeling Using Modeller. Curr Protoc Bioinformatics 15:5.6.1-5.6.30. https://doi.org/10.1002/0471250953.bi0506s15

    Article  Google Scholar 

  29. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  30. Oliveira SH, Ferraz FA, Honorato RV et al (2014) KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinform 15:197. https://doi.org/10.1186/1471-2105-15-197

    Article  CAS  Google Scholar 

  31. Basu A et al (2013) Discovery studio visualizer (DSV) v4.0.100.13345. ACCELRYS, San Diego

    Google Scholar 

  32. Kirchmair J, Markt P, Distinto S et al (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—What can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228. https://doi.org/10.1007/s10822-007-9163-6

    Article  CAS  PubMed  Google Scholar 

  33. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  34. Mendz GL, Holmes EM, Ferrero RL (1998) In situ characterization of Helicobacter pylori arginase. Biochim Biophys Acta 1388:465–477. https://doi.org/10.1016/S0167-4838(98)00207-6

    Article  CAS  PubMed  Google Scholar 

  35. Cama E, Pethe S, Boucher J-L et al (2004) Inhibitor coordination interactions in the binuclear manganese cluster of arginase. Biochemistry 43:8987–8999. https://doi.org/10.1021/bi0491705

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Zhang X, Wu C et al (2011) Expression, purification and characterization of arginase from Helicobacter pylori in Its Apo Form. PLoS ONE 6:e26205. https://doi.org/10.1371/journal.pone.0026205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hai Y, Christianson DW (2016) Crystal structures of Leishmania mexicana arginase complexed with α, α-disubstituted boronic amino-acid inhibitors. Acta Crystallogr F Struct Biol Commun 72:300–306. https://doi.org/10.1107/S2053230X16003630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Madeira F, Park Y, mi, Lee J, et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mysinger MM, Carchia M, JohnJ I, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson MA (2004) Molecular docking using arguslab, an efficient shape-based search algorithm and the ascore scoring function. Philadelphia: ACS meeting 172

  41. MarvinSketch v19.25. (2019) ChemAxon Ltd., Budapest. http://www.chemaxon.com

  42. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  43. Sigma-Aldrich (2010) Selected structure sets. In: Sigma aldrich. http://www.sigmaaldrich.com/chemistry/chemistry-services/selected-structure.html. Accessed 10 Sep 2017

  44. Huhtiniemi T, Salo HS, Suuronen T et al (2011) Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2. J Med Chem 54:6456–6468. https://doi.org/10.1021/jm200590k

    Article  CAS  PubMed  Google Scholar 

  45. Gacche NR, Meshram JR, Dawane AA et al (2016) Modeling studies of arginase from Helicobacter pylori divulge novel inhibitor-protein interactions. Clin Proteom Bioinform 1:54–61. https://doi.org/10.15761/CPB.1000113

    Article  Google Scholar 

  46. Zhang X, Zhang J, Zhang R et al (2013) Structural, enzymatic and biochemical studies on Helicobacter pylori arginase. Int J Biochem Cell Biol 45:995–1002. https://doi.org/10.1016/j.biocel.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  47. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667. https://doi.org/10.1093/nar/gkh381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wei BQ, Baase WA, Weaver LH et al (2002) A model binding site for testing scoring functions in molecular docking. J Mol Biol 322:339–355. https://doi.org/10.1016/S0022-2836(02)00777-5

    Article  CAS  PubMed  Google Scholar 

  49. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623. https://doi.org/10.1002/prot.10465

    Article  CAS  PubMed  Google Scholar 

  50. Ekins S, Bugrim A, Brovold L et al (2006) Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms. Xenobiotica 36:877–901. https://doi.org/10.1080/00498250600861660

    Article  CAS  PubMed  Google Scholar 

  51. López-López E, Naveja JJ, Medina-Franco JL (2019) DataWarrior: an evaluation of the open-source drug discovery tool. Expert Opin Drug Discov 14:335–341. https://doi.org/10.1080/17460441.2019.1581170

    Article  PubMed  Google Scholar 

  52. Cockerill FR, Clinical and Laboratory Standards Institute (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. Clinical and Laboratory Standards Institute, Wayne

  53. Freire PF, Peropadre A, Martín JMP et al (2009) An integrated cellular model to evaluate cytotoxic effects in mammalian cell lines. Toxicol in Vitro 23:1553–1558. https://doi.org/10.1016/j.tiv.2009.06.017

    Article  CAS  Google Scholar 

  54. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  55. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508. https://doi.org/10.1021/ci600426e

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Zhang H, Zheng M et al (2009) An effective docking strategy for virtual screening based on multi-objective optimization algorithm. BMC Bioinform 10:58. https://doi.org/10.1186/1471-2105-10-58

    Article  CAS  Google Scholar 

  57. Triballeau N, Acher F, Brabet I et al (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534–2547. https://doi.org/10.1021/jm049092j

    Article  CAS  PubMed  Google Scholar 

  58. Verdonk ML, Berdini V, Hartshorn MJ et al (2004) Virtual screening using protein−ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44:793–806. https://doi.org/10.1021/ci034289q

    Article  CAS  PubMed  Google Scholar 

  59. Deb PK, Abed SN, Jaber AMY, Tekade RK (2018) Particulate level properties and its implications on product performance and processing. In: Dosage form design parameters. Elsevier, pp 155–220. https://doi.org/10.1016/B978-0-12-409547-2.12318-2

  60. Yan Z, Wang J (2016) Scoring functions of protein-ligand interactions. In: Methods and algorithms for molecular docking-based drug design and discovery. IGI Global, pp 220–245. https://doi.org/10.4018/978-1-5225-0115-2.ch009

  61. Chen H, Zhou X, Gao Y, et al (2017) Fragment-based drug design: strategic advances and lessons learned. In: Comprehensive medicinal chemistry III. Elsevier, pp 212–232. https://doi.org/10.1016/B978-0-12-409547-2.12319-4

  62. Holdgate GA (2017) Kinetics, thermodynamics, and ligand efficiency metrics in drug discovery. In: Chemistry, molecular sciences and chemical engineering. Elsevier, pp 180–211. https://doi.org/10.1016/B978-0-12-409547-2.12318-2

  63. Wang Y-C (2014) Medicinal plant activity on Helicobacter pylori related diseases. World J Gastroentero 20:10368. https://doi.org/10.3748/wjg.v20.i30.10368

    Article  CAS  Google Scholar 

  64. Zhou J-T, Li C-L, Tan L-H et al (2017) Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS ONE 12:e0168944. https://doi.org/10.1371/journal.pone.0168944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. González A, Casado J, Chueca E et al (2020) Small molecule inhibitors of the response regulator ArsR exhibit bactericidal activity against Helicobacter pylori. Microorganisms 8:503. https://doi.org/10.3390/microorganisms8040503

    Article  CAS  PubMed Central  Google Scholar 

  66. Ghosh S, Chakraborty P, Chakrabarti A et al (2016) Biological activity of dendrimer–methylglyoxal complexes for improved therapeutic efficacy against malignant cells. RSC Adv 6:6631–6642. https://doi.org/10.1039/C5RA23477H

    Article  CAS  Google Scholar 

  67. Wang XS, Tang H, Golbraikh A, Tropsha A (2008) Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F. J Chem Inf Model 48:997–1013. https://doi.org/10.1021/ci700404c

    Article  CAS  PubMed  Google Scholar 

  68. Moss SF (2017) The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol 3:183–191. https://doi.org/10.1016/j.jcmgh.2016.12.001

    Article  PubMed  Google Scholar 

  69. Cho E, Lee J-K, Park E et al (2018) Antitumor activity of HPA3P through RIPK3-dependent regulated necrotic cell death in colon cancer. Oncotarget 9:7902–7917. https://doi.org/10.18632/oncotarget.24083

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hursting SD, Slaga TJ, Fischer SM et al (1999) Mechanism-based cancer prevention approaches: targets, examples, and the use of transgenic mice. J Natl Cancer Inst 91:215–225. https://doi.org/10.1093/jnci/91.3.215

    Article  CAS  PubMed  Google Scholar 

  71. Niwa T, Toyoda T, Tsukamoto T et al (2013) Prevention of Helicobacter pylori—induced gastric cancers in gerbils by a DNA demethylating agent. Cancer Prev Res 6:263–270. https://doi.org/10.1158/1940-6207.CAPR-12-0369

    Article  CAS  Google Scholar 

  72. Weerapreeyakul N, Nonpunya A, Barusrux S et al (2012) Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin Med 7:15. https://doi.org/10.1186/1749-8546-7-15

    Article  PubMed  PubMed Central  Google Scholar 

  73. Badisa RB, Darling-Reed SF, Joseph P et al (2009) Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res 29:2993–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clarivate Metacore online. In: Clarivate. https://portal.genego.com/help2/wwhelp/wwhimpl/js/html/wwhelp.htm. Accessed 10 Nov 2021

  75. Ritchie TJ, Macdonald SJF (2009) The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discov Today 14:1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014

    Article  CAS  PubMed  Google Scholar 

  76. Bloch D (1995) Computer software review. Review of PHYSPROP database (Version 1.0). J Chem Inf Comput Sci 35:328–329. https://doi.org/10.1021/ci00024a602

    Article  CAS  Google Scholar 

  77. openmolecules.org (2021) DataWarrior User Manual. In: openmolecules.org. https://openmolecules.org/properties/properties.html#psa. Accessed 20 Nov 2021

  78. Davis AM, Plowright AT, Valeur E (2017) Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 16:681–698. https://doi.org/10.1038/nrd.2017.146

    Article  CAS  PubMed  Google Scholar 

  79. Kerns EH, Di L (2008) Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization. Academic Press, Amsterdam

    Google Scholar 

  80. Yang NJ, Hinner MJ (2015) Getting across the cell membrane: an overview for small molecules, peptides, and proteins. In: Gautier A, Hinner MJ (eds) Site-specific protein labeling. Springer, New York, pp 29–53. https://doi.org/10.1007/978-1-4939-2272-7_3

    Chapter  Google Scholar 

  81. Fuentes A, Pineda M, Venkata K (2018) Comprehension of Top 200 prescribed drugs in the US as a resource for pharmacy teaching. Train Pract Pharm 6:43. https://doi.org/10.3390/pharmacy6020043

    Article  Google Scholar 

  82. Chiang C-W, Yeh H-C, Wang L-H, Chan N-L (2006) Crystal structure of the human prostacyclin synthase. J Mol Biol 364:266–274. https://doi.org/10.1016/j.jmb.2006.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Sao Paulo, in the person of Prof. Dr. Ivone Carvalho, for the use of the MetaCore platform from Clarivate Analytics in the prediction of pharmacokinetic endpoints. The authors thank the “Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2018/08585-1: D.F.K.)” and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 309802/2020-2: M.L.)” for the financial support. This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES, Finance Code 001; Project 39-P-4763/2018: A.T.F.D.; grants 88882.385410/2019-01: J.R.P.O.B.; 88887.643019/2021-00: R.R.K.; 88887.643019/2021-00: J.P.O.G.; 88887.512993/2020-00: R.P.R.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fábio Kawano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiori-Duarte, A.T., de Oliveira Guarnieri, J.P., de Oliveira Borlot, J.R.P. et al. In silico design and in vitro assessment of anti-Helicobacter pylori compounds as potential small-molecule arginase inhibitors. Mol Divers 26, 3365–3378 (2022). https://doi.org/10.1007/s11030-021-10371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10371-8

Keywords

Navigation