Skip to main content

Advertisement

Log in

Antioxidant and cytotoxic activities of selected salicylidene imines: experimental and computational study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Selected salicylidene imines were evaluated for their antioxidant and cytotoxic potentials. Several of them exerted potent scavenging capacity towards ABTS radical and hydrogen peroxide. The insight into the preferable antioxidative mechanism was reached employing density functional theory. In the absence of free radicals, the SPLET mechanism is dominant in polar surroundings, while HAT is prevailing in a non-polar environment. The results obtained for the reactions of the most active compounds with some medically relevant radicals pointed out competition between HAT and SPLET mechanisms. The assessment of their cytotoxic properties revealed inhibition of ER-a human breast adenocarcinoma cells or estrogen-independent prostate cancer cells. Molecular docking study with the cyclooxygenase (COX) 2 enzyme was performed to examine the most probable bioactive conformations and possible interactions between the tested derivatives and COX-2 binding pocket.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Hodnett E, Dunn W (1970) Structure-antitumor activity correlation of some Schiff bases. J Med Chem 13:768–770. https://doi.org/10.1021/jm00298a054

    Article  CAS  PubMed  Google Scholar 

  2. Da Silva C et al (2011) Schiff bases: a short review of their antimicrobial activities. J Adv Res 2:1–8. https://doi.org/10.1016/j.jare.2010.05.004

    Article  Google Scholar 

  3. Sztanke K et al (2013) An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg Med Chem 21:3648–3666. https://doi.org/10.1016/j.bmc.2013.04.037

    Article  CAS  PubMed  Google Scholar 

  4. Ariyaeifar M et al (2018) Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study. J Mol Struct 1161:497–511. https://doi.org/10.1016/j.molstruc.2018.02.042

    Article  CAS  Google Scholar 

  5. Bharathi Dileepan A et al (2018) Isatin based macrocyclic Schiff base ligands as novel candidates for antimicrobial and antioxidant drug design: In vitro DNA binding and biological studies. J Photochem Photobiol B Biol 183:191–200. https://doi.org/10.1016/j.jphotobiol.2018.04.029

    Article  CAS  Google Scholar 

  6. García-Valle F et al (2018) Aluminates with fluorinated Schiff bases: influence of the alkali metal-fluorine interactions in structure stabilization. Molecules 23:3108. https://doi.org/10.3390/molecules23123108

    Article  CAS  PubMed Central  Google Scholar 

  7. Tan X et al (2019) Synthesis, structure and antiproliferative and optical activities of two new biphenyl-derived Schiff bases. Acta Cryst C 75:97–106. https://doi.org/10.1107/S2053229618017989

    Article  CAS  Google Scholar 

  8. Shao J et al (2005) Determination of the potency and subunit-selectivity of ribonucleotide reductase inhibitors with a recombinant-holoenzyme-based in vitro assay. Biochem Pharmacol 69:627–634. https://doi.org/10.1016/j.bcp.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  9. Gama S et al (2011) Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J Inorg Biochem 105:637–644. https://doi.org/10.1016/j.jinorgbio.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  10. Kraicheva I et al (2012) Synthesis, antiproliferative activity and genotoxicity of novel anthracene-containing aminophosphonates and a new anthracene-derived Schiff base. Bioorg Med Chem 20:117–124. https://doi.org/10.1016/j.bmc.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  11. Kamel M et al (2010) Synthesis, antitumor activity and molecular docking study of novel Sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur J Med Chem 45:572–580. https://doi.org/10.1016/j.ejmech.2009.10.044

    Article  CAS  PubMed  Google Scholar 

  12. Vicini P et al (2003) Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg Med Chem 11:4785–4789. https://doi.org/10.1016/S0968-0896(03)00493-0

    Article  CAS  PubMed  Google Scholar 

  13. Tang Y, Liu Z (2007) Insight into the free-radical-scavenging mechanism of hydroxyl-substituent Schiff bases in the free-radical-induced hemolysis of erythrocytes. Cell Biochem Funct 25:701–710. https://doi.org/10.1002/cbf.1378

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y et al (2013) Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives. Bioorg Med Chem Lett 23:107–111. https://doi.org/10.1016/j.bmcl.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  15. Kotora P et al (2016) The scavenging of DPPH, galvinoxyl and ABTS radicals by imine analogs of resveratrol. Molecules 21:127. https://doi.org/10.3390/molecules21010127

    Article  CAS  PubMed Central  Google Scholar 

  16. Lushchak V (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. https://doi.org/10.1016/j.cbi.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  17. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:1–8. https://doi.org/10.1186/1477-3163-5-14

    Article  CAS  Google Scholar 

  18. Labunskyy V, Gladyshev V (2013) Role of reactive oxygen species-mediated signaling in aging. Antioxid Redox Signal 19:1362–1372. https://doi.org/10.1089/ars.2012.4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao F, Liu Z (2009) The protective effect of hydroxyl-substituted Schiff bases on the radical-induced oxidation of DNA. J Phys Org Chem 22:791–798. https://doi.org/10.1002/poc.1517

    Article  CAS  Google Scholar 

  20. Yusuff O et al (2019) Kinetics and mechanism of the antioxidant activities of C. olitorius and V. amygdalina by Spectrophotometric and DFT methods. ACS Omega 4:13671–13680. https://doi.org/10.1021/acsomega.9b00851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Craft B et al (2012) Phenol-based antioxidants and the In Vitro methods used for their assessment. Compr Rev Food Sci Food Saf 11:148–173. https://doi.org/10.1111/j.1541-4337.2011.00173.x

    Article  CAS  Google Scholar 

  22. Di Meo F et al (2013) Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem 117:2082–2092. https://doi.org/10.1021/jp3116319

    Article  CAS  Google Scholar 

  23. Farrokhnia M (2020) Density functional theory studies on the antioxidant mechanism and electronic properties of some bioactive marine meroterpenoids: Sargahydroquionic acid and sargachromanol. ACS Omega 5:20382–20390. https://doi.org/10.1021/acsomega.0c02354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alov P, Tsakovska I, Pajeva I (2014) Computational studies of free radical-scavenging properties of phenolic compounds. Curr Top Med Chem 15:85–104. https://doi.org/10.2174/1568026615666141209143702

    Article  CAS  Google Scholar 

  25. Kirschenbaum A et al (2001) The role of cyclooxygenase-2 in prostate cancer. Urology 58:127–131. https://doi.org/10.1016/S0090-4295(01)01255-9

    Article  CAS  PubMed  Google Scholar 

  26. Half E et al (2002) Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Cancer Res 62:1676–1681

    CAS  PubMed  Google Scholar 

  27. Singh-Ranger G, Mokbel K (2002) The role of cyclooxygenase-2 (COX-2) in breast cancer, and implications of COX-2 inhibition. Eur J Surg Oncol 28:729–737. https://doi.org/10.1053/ejso.2002.1329

    Article  CAS  PubMed  Google Scholar 

  28. Sooriakumaran P, Kaba R (2005) The risks and benefits of cyclo-oxygenase-2 inhibitors in prostate cancer: a review. Int J Surg 3:278–285. https://doi.org/10.1016/j.ijsu.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  29. Mazhar D, Ang R, Waxman J (2006) COX inhibitors and breast cancer. Br J Cancer 94:346–350. https://doi.org/10.1038/sj.bjc.6602942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khor L et al (2007) COX-2 expression predicts prostate-cancer outcome: analysis of data from the RTOG 92–02 trial. Lancet Oncol 8:912–920. https://doi.org/10.1016/S1470-2045(07)70280-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh B et al (2007) COX-2 involvement in breast cancer metastasis to bone. Oncogene 26:3789–3796. https://doi.org/10.1038/sj.onc.1210154

    Article  CAS  PubMed  Google Scholar 

  32. Csepregi K et al (2016) Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 21:1–17. https://doi.org/10.3390/molecules21020208

    Article  CAS  Google Scholar 

  33. Velena A et al (2016) 1,4-dihydropyridine derivatives: dihydronicotinamide analogues-model compounds targeting oxidative stress. Oxid Med Cell Longev 2016:1892412. https://doi.org/10.1155/2016/1892412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikokavoura A et al (2011) Evaluation of antioxidant activity of hydrophilic and lipophilic compounds in edible oils by a novel fluorimetric method. Talanta 84:874–880. https://doi.org/10.1016/j.talanta.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Wang X, Kong L (2014) Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur J Med Chem 71:36–45. https://doi.org/10.1016/j.ejmech.2013.10.068

    Article  CAS  PubMed  Google Scholar 

  36. Slassi S et al (2019) Imidazole and Azo-based Schiff bases ligands as highly active antifungal and antioxidant components. Heteroat Chem 2019:1–8. https://doi.org/10.1155/2019/6862170

    Article  CAS  Google Scholar 

  37. Yang H et al (2017) Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid-β aggregation for the treatment of Alzheimer’s disease. Eur J Med Chem 138:715–728. https://doi.org/10.1016/j.ejmech.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  38. Krokidis M et al (2019) Assessment of dna topoisomerase i unwinding activity, radical scavenging capacity, and inhibition of breast cancer cell viability of N-alkylacridones and N, Nʹ-dialkyl-9,9ʹ-biacridylidenes. Biomolecules 9:1–15. https://doi.org/10.3390/biom9050177

    Article  CAS  Google Scholar 

  39. da Silva C et al (2017) Studies on free radical scavenging, cancer cell antiproliferation, and calf thymus DNA interaction of Schiff bases. J Photochem Photobiol B 172:129–138. https://doi.org/10.1016/j.jphotobiol.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  40. Adsule S et al (2006) Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J Med Chem 49:7242–7246. https://doi.org/10.1021/jm060712l

    Article  CAS  PubMed  Google Scholar 

  41. Antonczak S (2008) Electronic description of four flavonoids revisited by DFT method. J Mol Struct-Theochem 856:38–45. https://doi.org/10.1016/j.theochem.2008.01.014

    Article  CAS  Google Scholar 

  42. Petrović Z et al (2015) Experimental and theoretical study of antioxidative properties of some salicylaldehyde and vanillic Schiff bases. RSC Adv 5:24094–24100. https://doi.org/10.1039/c5ra02134k

    Article  Google Scholar 

  43. Xie J, Schaich K (2014) Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J Agric Food Chem 62:4251–4260. https://doi.org/10.1021/jf500180u

    Article  CAS  PubMed  Google Scholar 

  44. Hammamieh R, Jett M (2008) Potential roles for inhibitors of arachidonic acid metabolism in prevention and treatment of breast cancer. Future Lipidol 3:265–271. https://doi.org/10.2217/17460875.3.3.265

    Article  CAS  Google Scholar 

  45. Yang P et al (2012) Arachidonic acid metabolism in human prostate cancer. Int J Oncol 41:1495–1503. https://doi.org/10.3892/ijo.2012.1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pang L, Hurst E, Argyle D (2016) Cyclooxygenase-2: a role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int 2016:2048731. https://doi.org/10.1155/2016/2048731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hashemi Goradel N et al (2019) Cyclooxygenase-2 in cancer: a review. J Cell Physiol 234:5683–5699. https://doi.org/10.1002/jcp.27411

    Article  CAS  PubMed  Google Scholar 

  48. Brizzolara A et al (2017) The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer. Cancer Lett 400:9–17. https://doi.org/10.1016/j.canlet.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  49. Shi L et al (2018) Celecoxib-induced self-assembly of smart albumin-doxorubicin conjugate for enhanced cancer therapy. ACS Appl Mater Interfaces 10:8555–8565. https://doi.org/10.1021/acsami.8b00875

    Article  CAS  PubMed  Google Scholar 

  50. Moustakali-Mavridis I, Hadjoudis E, Mavridis A (1978) Crystal and molecular structure of some thermochromic Schiff bases. Acta Crystallogr Sect B 34:3709–3715. https://doi.org/10.1107/S0567740878011930

    Article  Google Scholar 

  51. Talati J, Desai M, Shah N (2005) Meta-substituted aniline-N-salicylidenes as corrosion inhibitors of zinc in sulphuric acid. Mater Chem Phys 93:54–64. https://doi.org/10.1016/j.matchemphys.2005.02.004

    Article  CAS  Google Scholar 

  52. Chatziefthimiou S et al (2006) Keto forms of salicylaldehyde Schiff bases: Structural and theoretical aspects. J Phys Chem B 110:23701–23709. https://doi.org/10.1021/jp064110p

    Article  CAS  PubMed  Google Scholar 

  53. Koar B et al (2009) (E)-2-[(4-chloro-phen-yl)imino-meth-yl]-5-methoxy-phenol and (E)-2-[(2-chloro-phen-yl)imino-meth-yl]-5-methoxy-phenol: X-ray and DFT-calculated structures. Acta Crystallogr Sect C Cryst Struct Commun 65:8–13. https://doi.org/10.1107/S0108270109034350

    Article  CAS  Google Scholar 

  54. Al-Kahraman Y et al (2010) Antileishmanial, antimicrobial and antifungal activities of some new aryl azomethines. Molecules 15:660–671. https://doi.org/10.3390/molecules15020660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Christodouleas D, Papadopoulos K, Calokerinos A (2011) Determination of total antioxidant activity of edible oils as well as their aqueous and organic extracts by chemiluminescence. Food Anal Methods 4:475–484. https://doi.org/10.1007/s12161-010-9189-6

    Article  Google Scholar 

  56. Dl Christodouleas et al (2015) Modified DPPH and ABTS assays to assess the antioxidant profile of untreated oils. Food Anal Methods 8:1294–1302. https://doi.org/10.1007/s12161-014-0005-6

    Article  Google Scholar 

  57. Frisch M et al (2016) G16_C01. p. Gaussian 16, Revision C.01, Gaussian, Inc., Wallin

  58. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  59. Marenich A, Cramer C, Truhlar D (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:4538–4543. https://doi.org/10.1021/jp809094y

    Article  CAS  PubMed  Google Scholar 

  60. Marković Z et al (2016) Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Comput Theor Chem 1077:11–17. https://doi.org/10.1016/j.comptc.2015.09.007

    Article  CAS  Google Scholar 

  61. Orlando B, Malkowski M (2016) Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone. J Biol Chem 291:15069–15081. https://doi.org/10.1074/jbc.M116.725713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pettersen E et al (2004) UCSF chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  63. Simijonović D et al (2018) Dicoumarol derivatives: green synthesis and molecular modelling studies of their anti-LOX activity. Bioorg Chem 80:741–752. https://doi.org/10.1016/j.bioorg.2018.07.021

    Article  CAS  PubMed  Google Scholar 

  64. Fiser A, Šali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Meth Enzymol 374:461–491. https://doi.org/10.1016/S0076-6879(03)74020-8

    Article  CAS  Google Scholar 

  65. Kouzi O, Pontiki E, Hadjipavlou-Litina D (2019) 2-arylidene-1-indandiones as pleiotropic agents with antioxidant and inhibitory enzymes activities. Molecules 24:1–20. https://doi.org/10.3390/molecules24234411

    Article  CAS  Google Scholar 

  66. Saeed A, Mumtaz A, Flörke U (2007) 1-(3,4-Dimethoxy-benz-oyl)-3,5-dimethyl-1H-pyrazole. Acta Crystallogr E 63(10):1098. https://doi.org/10.1107/S1600536807044960

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement No. 451-03-9/2021-14/200122).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marios G. Krokidis or Vladimir P. Petrović.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4801 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branković, J., Krokidis, M.G., Dousi, I. et al. Antioxidant and cytotoxic activities of selected salicylidene imines: experimental and computational study. Mol Divers 26, 3115–3128 (2022). https://doi.org/10.1007/s11030-021-10370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10370-9

Keywords

Navigation