Skip to main content
Log in

Iron-catalyzed intermolecular cross-dehydrogenative C(sp3)–H/C(sp)–H coupling of pyrimidine bearing 4-thiazolidinones with terminal alkynes

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A novel, simple and efficient protocol for the Fe-catalyzed, intermolecular cross-dehydrogenative coupling of pyrimidine bearing 4-thiazolidinones systems and terminal alkynes was established. This methodology offers a high yielding, straightforward, and one-pot approach towards the synthesis of alkynylated 4-thiazolidinones without prior activation of C(sp3)–H and C(sp)–H. The results of control experiments indicated that this conversion might proceed via a radical process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Verma A, Saraf SK (2008) 4-Thiazolidinone–a biologically active scaffold. Eur J Med Chem 43(5):897–905

    Article  CAS  PubMed  Google Scholar 

  2. Tripathi AC, Gupta S, Fatima GN, Sonar PK, Verma A, Saraf SK (2014) 4-Thiazolidinones: the advances continue…. Eur J Med Chem 72:52–77

    Article  CAS  PubMed  Google Scholar 

  3. Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal RK (2012) Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorg Med Chem 20(11):3378–3395

    Article  CAS  PubMed  Google Scholar 

  4. Momose Y, Meguro K, Ikeda H, Hatanaka C, Oi S, Sohda T (1991) Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem Pharma Bull. 39(6):1440–1445

    Article  CAS  Google Scholar 

  5. Cheng P, Guo W, Chen P, Liu Y, Du X, Li C (2016) The enantioselective construction of chiral spirooxindole-based 4-thiazolidinone via asymmetric catalytic formal [3+ 2] annulation using a bifunctional catalyst. Chem Comm 52(16):3418–3421

    Article  CAS  PubMed  Google Scholar 

  6. Mehdi RBA, Shaaban KA, Rebai IK, Smaoui S, Bejar S, Mellouli L (2009) Five naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the Streptomyces sp. strain TN58. Nat Prod Res 23(12):1095–1107

    Article  Google Scholar 

  7. Fischer W, Bodewei R, Satzinger G (1992) Anticonvulsant and sodium channel blocking effects of ralitoline in different screening models. Naunyn-Schmiedeb Arch Pharmacol 346(4):442–452

    Article  CAS  Google Scholar 

  8. Sharples KR, Hawkes TR, Mitchell G, Edwards LS, Langford MP, Langton DW, Rogers KM, Townson JK, Wang Y (1998) A novel thiazolidinone herbicide is a potent inhibitor of glucose incorporation into cell wall material. Pesti Sci 54(4):368–376

    Article  CAS  Google Scholar 

  9. Trost BM, Li CJ (eds) (2015) Modern alkyne chemistry: catalytic and atom-economic transformations. Wiley

    Google Scholar 

  10. Cera G, Haven T, Ackermann L (2017) Iron-catalyzed C−H alkynylation through triazole assistance: expedient access to bioactive heterocycles. Chem Eur J 23(15):3577–3582

    Article  CAS  PubMed  Google Scholar 

  11. Brand JP, Waser J (2012) Electrophilic alkynylation: the dark side of acetylene chemistry. Chem Soc Rev 41(11):4165–4179

    Article  CAS  PubMed  Google Scholar 

  12. Amir M, Javed SA, Kumar H (2007) Pyrimidine as antiinflammatory agent: a review. Ind J Pharm Sci 69(3):337

    Article  CAS  Google Scholar 

  13. Selvam TP, James CR, Dniandev PV, Valzita SK (2015) A mini review of pyrimidine and fused pyrimidine marketed drugs. Res Pharm 2(4):1–9

    Google Scholar 

  14. Bhat AR, Dongre RS, Naikoo GA, Hassan IU, Ara T (2017) Proficient synthesis of bioactive annulated pyrimidine derivatives: a review. J Taibah Univ Sci 11(6):1047–1069

    Article  Google Scholar 

  15. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  16. Bérubé G (2016) An overview of molecular hybrids in drug discovery. Expert Opin Drug Discov 11(3):281–305

    Article  PubMed  Google Scholar 

  17. Meunier B (2008) Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res 41(1):69–77

    Article  CAS  PubMed  Google Scholar 

  18. Jung ME, Ku JM, Du L, Hu H, Gatti RA (2011) Synthesis and evaluation of compounds that induce readthrough of premature termination codons. Bioorg Med Chem Lett 21(19):5842–5848

    Article  CAS  PubMed  Google Scholar 

  19. Gopalakrishnan M, Thanusu J, Kanagarajan V (2009) Design, synthesis, spectral analysis and in vitro microbiological evaluation of 2-phenyl-3-(4, 6-diarylpyrimidin-2-yl) thiazolidin-4-ones. J Enzyme Inhib Med Chem 24(5):1088–1094

    Article  CAS  PubMed  Google Scholar 

  20. Patel JJ, Morja MI, Chikhalia KH (2020) An efficient synthesis of designed 4-thiazolidinone fused pyrimidine derivatives as potent antimicrobial agents. J Heterocycl Chem 57(10):3531–3543

    Article  CAS  Google Scholar 

  21. Magano J, Dunetz JR (2011) Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem Rev 111(3):2177–2250

    Article  CAS  PubMed  Google Scholar 

  22. Beletskaya IP, Ananikov VP (2011) Transition-metal-catalyzed C−S, C−Se, and C−Te bond formation via cross-coupling and atom-economic addition reactions. Chem Rev 111(3):1596–1636

    Article  CAS  PubMed  Google Scholar 

  23. Chen PH, Billett BA, Tsukamoto T, Dong G (2017) Cut and sew” transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal 7(2):1340–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chandra D, Dhiman AK, Parmar D, Sharma U (2020) Alkylation, alkenylation, and alkynylation of heterocyclic compounds through group 9 (Co, Rh, Ir) metal-catalyzed CH activation. Catal Rev. https://doi.org/10.1080/01614940.2020.1839849

    Article  Google Scholar 

  25. Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK (2021) Au–Ag bimetallic catalysis: 3-alkynyl benzofurans from phenols via tandem C−H alkynylation/oxy-alkynylation. Angew Chem Int Ed 60(19):10637–10642

    Article  CAS  Google Scholar 

  26. Shaikh MUM, Mudaliar SS, Chikhalia KH (2016) An efficient alkynylation of 4-thiazolidinone with terminal alkyne under C–H functionalisation. RSC Adv 6(56):50780–50785

  27. Shaikh MM, Patel AP, Chikhalia KH (2019) Copper catalysed cross-dehydrogenative coupling (CDC) reaction of 4-thiazolidinone with terminal alkyne. Tetrahedron 75(4):475–485

  28. Patel A, Patel J, Chikhalia KH (2017) Palladium-catalyzed acid-free Fujiwara-Moritani alkenylation of 4-thiazolidinones. Mol Divers 21(4):1011–1020

    Article  CAS  PubMed  Google Scholar 

  29. Chauhan PM, Morja MI, Asamdi M, Chikhalia KH (2020) Copper catalyzed cyanomethylation reaction of 4-thiazolidinone. Tetrahedron Lett 61(50):152601

    Article  CAS  Google Scholar 

  30. Morja MI, Patel JJ, Chauhan PM, Chikhalia KH (2020) An efficient synthesis of strained thio-bridged compounds via Pd (0) catalyzed intramolecular Csp2 (aryl)-Csp3 (alkyl) cross dehydrohalogenative coupling reaction. Tetrahedron 76(34):131348

    Article  CAS  Google Scholar 

  31. Morja MI, Chauhan PM, Chikhalia KH (2021) Palladium-catalyzed novel C (formyl)-C (aryl)/C (aryl)-N (amine) coupling sequence between 2-(methylamino) nicotinaldehyde and 3-bromo-2-chlorothiophene: an efficient construction of 4-pyridone fused hybrid scaffolds. ChemistrySelect 6(20):5014–5020

    Article  CAS  Google Scholar 

  32. Morja MI, Chauhan PM, Chikhalia KH (2021) Iron catalyzed alkynylation of thiohydantoins with terminal alkyne via cross-dehydrogenative coupling (CDC). Tetrahedron Lett 77:153148

    Article  CAS  Google Scholar 

  33. Gao J, Song QW, He LN, Yang ZZ, Dou XY (2012) Efficient iron (iii)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Chem Commun 48(14):2024–2026

    Article  CAS  Google Scholar 

  34. Volla CM, Vogel P (2009) Chemoselective C−H bond activation: ligand and solvent free iron-catalyzed oxidative C−C cross-coupling of tertiary amines with terminal alkynes. React Scope Mech Org Lett 11(8):1701–1704

    Article  CAS  Google Scholar 

  35. Patil SS, Jadhav RP, Patil SV, Bobade VD (2011) Ligand and solvent-free iron catalyzed oxidative alkynylation of azoles with terminal alkynes. Tetrahedron Lett 52(43):5617–5619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to IISER-Pune and IIT-Bombay for the spectral analysis. Authors express their gratitude to Head of Chemistry Department, Veer Narmad South Gujarat University, Surat, to provide necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor H. Chikhalia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morja, M.I., Chikhalia, K.H. Iron-catalyzed intermolecular cross-dehydrogenative C(sp3)–H/C(sp)–H coupling of pyrimidine bearing 4-thiazolidinones with terminal alkynes. Mol Divers 26, 3037–3045 (2022). https://doi.org/10.1007/s11030-021-10363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10363-8

Keywords

Navigation