Skip to main content
Log in

A novel series of pyrazole derivatives toward biological applications: experimental and conceptual DFT characterization

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new series of 13 pyrazole-derivative compounds with potential antifungal activity were synthetized with good yields. The series have the (E)-2-((1-(R)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol general structure and were characterized by means of X-ray diffraction, UV–Vis, FTIR, 1H-NMR, 13C-NMR, and two-dimensional NMR experiments. This experimental characterization was complemented by DFT simulations. A deep insight regarding molecular reactivity was accomplished employing a conceptual DFT approach. In this sense, dual descriptors were calculated at HF and DFT level of theory and GGV spin-density Fukui functions. The main reactive region within the molecules was mapped through isosurface and condensed representations. Finally, chemical descriptors that have previously shown to be close related to biological activity were compared within the series. Thus, higher values of chemical potential ω and electrophilicity χ obtained for compounds 10, 9, 8, 6 and 7, in this order, suggest that these molecules are the better candidates as biological agents.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Srivastava M, Singh J, Singh SB et al (2012) Synthesis of novel fused heterocycle-oxa-aza-phenanthrene and anthracene derivatives via sequential one-pot synthesis in aqueous micellar system. Green Chem 14:901–905. https://doi.org/10.1039/C2GC16425F

    Article  CAS  Google Scholar 

  2. Pai G, Chattopadhyay AP (2016) N-Arylation of nitrogen containing heterocycles with aryl halides using copper nanoparticle catalytic system. Tetrahedron Lett 57:3140–3145. https://doi.org/10.1016/j.tetlet.2016.06.019

    Article  CAS  Google Scholar 

  3. Sivaramakarthikeyan R, Iniyaval S, Saravanan V et al (2020) Molecular hybrids integrated with benzimidazole and pyrazole structural motifs: design, synthesis, biological evaluation, and molecular docking studies. ACS Omega 5:10089–10098. https://doi.org/10.1021/acsomega.0c00630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alam R, Wahi D, Singh R et al (2016) Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg Chem 69:77–90. https://doi.org/10.1016/j.bioorg.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Y, Yang N, Deng Y et al (2020) Mechanism of action of novel pyrazole carboxamide containing a diarylamine Scaffold against Rhizoctonia solani. J Agric Food Chem 68:11068–11076. https://doi.org/10.1021/acs.jafc.9b06937

    Article  CAS  PubMed  Google Scholar 

  6. Zhang A, Zhou J, Tao K et al (2018) Design, synthesis and antifungal evaluation of novel pyrazole carboxamides with diarylamines scaffold as potent succinate dehydrogenase inhibitors. Bioorg Med Chem Lett 28:3042–3045. https://doi.org/10.1016/j.bmcl.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  7. Bekhit AA, Hassan AMM, Abd El Razik HA et al (2015) New heterocyclic hybrids of pyrazole and its bioisosteres: design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur J Med Chem 94:30–44. https://doi.org/10.1016/j.ejmech.2015.02.038

    Article  CAS  PubMed  Google Scholar 

  8. Sony J, Ganguly S (2016) Battle against aids: new pyrazole key to an older lock-reverse transcriptase. Int J Pharm Pharm Sci 8:75–79. https://doi.org/10.22159/ijpps.2016v8i11.12634

    Article  CAS  Google Scholar 

  9. Karrouchi K, Radi S, Ramli Y et al (2018) Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules. https://doi.org/10.3390/molecules23010134

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sato T, Sekimata K, Sakai N et al (2020) Structural basis of activin receptor-like kinase 2 (R206H) Inhibition by bis-heteroaryl pyrazole-based inhibitors for the treatment of fibrodysplasia ossificans progressiva identified by the integration of ligand-based and structure-based drug design approaches. ACS Omega 5:11411–11423. https://doi.org/10.1021/acsomega.9b04245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merillas B, Cuéllar E, Diez-Varga A et al (2020) Luminescent rhenium(I)tricarbonyl complexes containing different pyrazoles and their successive deprotonation products: CO2 reduction electrocatalysts. Inorg Chem 59:11152–11165. https://doi.org/10.1021/acs.inorgchem.0c01654

    Article  CAS  PubMed  Google Scholar 

  12. Cui Y, Xu Z, Li H-Y et al (2020) Synthesis of a pyrazole-based microporous organic polymer for high-performance CO2 capture and alkyne carboxylation. ACS Appl Polym Mater 2:4512–4520. https://doi.org/10.1021/acsapm.0c00592

    Article  CAS  Google Scholar 

  13. Tighadouini S, Radi S, El Massaoudi M et al (2020) Efficient and environmentally friendly adsorbent based on β-Ketoenol-Pyrazole-thiophene for heavy-metal ion removal from aquatic medium: a combined experimental and theoretical study. ACS Omega 5:17324–17336. https://doi.org/10.1021/acsomega.0c01616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang T-F, Kosuru SR, Yu S-C et al (2020) Use of pyrazoles as ligands greatly enhances the catalytic activity of titanium iso-propoxide for the ring-opening polymerization of l-lactide: a cooperation effect. RSC Adv 10:40690–40696. https://doi.org/10.1039/D0RA07824G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rai G, Urban DJ, Mott BT et al (2020) Pyrazole-based lactate dehydrogenase inhibitors with optimized cell activity and pharmacokinetic properties. J Med Chem 63:10984–11011. https://doi.org/10.1021/acs.jmedchem.0c00916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meera G, Rohit KR, Saranya S, Anilkumar G (2020) Microwave assisted synthesis of five membered nitrogen heterocycles. RSC Adv 10:36031–36041. https://doi.org/10.1039/D0RA05150K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zimnitskiy NS, Barkov AY, Ulitko MV et al (2020) An expedient synthesis of novel spiro[indenoquinoxaline-pyrrolizidine]-pyrazole conjugates with anticancer activity from 1,5-diarylpent-4-ene-1,3-diones through the 1,3-dipolar cycloaddition/cyclocondensation sequence. New J Chem 44:16185–16199. https://doi.org/10.1039/D0NJ02817G

    Article  CAS  Google Scholar 

  18. Olyaei A, Sadeghpour M (2020) Recent developments in the synthesis and applications of furopyrazoles. New J Chem 44:14791–14813. https://doi.org/10.1039/D0NJ02178D

    Article  CAS  Google Scholar 

  19. Bouton J, Van Calenbergh S, Hullaert J (2020) Sydnone ribosides as a platform for the synthesis of pyrazole C-nucleosides: a unified synthesis of formycin B and pyrazofurin. Org Lett 22:9287–9291. https://doi.org/10.1021/acs.orglett.0c03523

    Article  CAS  PubMed  Google Scholar 

  20. Komorski S, Leszczyński MK, Justyniak I, Lewiński J (2020) Structural diversity of ethylzinc derivatives of 3,5-substituted pyrazoles. Dalton Trans 49:17388–17394. https://doi.org/10.1039/D0DT03026K

    Article  CAS  PubMed  Google Scholar 

  21. El-Reedy AAM, Soliman NK (2020) Synthesis, biological activity and molecular modeling study of novel 1,2,4-triazolo[4,3-b][1,2,4,5]tetrazines and 1,2,4-triazolo[4,3-b][1,2,4]triazines. Sci Rep 10:6137. https://doi.org/10.1038/s41598-020-62977-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sivaramakarthikeyan R, Iniyaval S, Lim W-M et al (2020) Pyrazolylphenanthroimidazole heterocycles: synthesis, biological and molecular docking studies. New J Chem 44:19612–19622. https://doi.org/10.1039/D0NJ02214D

    Article  CAS  Google Scholar 

  23. Singh I, Al-Wahaibi LH, Srivastava R et al (2020) DFT study on the electronic properties, spectroscopic profile, and biological activity of 2-Amino-5-trifluoromethyl-1,3,4-thiadiazole with anticancer properties. ACS Omega 5:30073–30087. https://doi.org/10.1021/acsomega.0c04474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tigreros A, Aranzazu S-L, Bravo N-F et al (2020) Pyrazolo[1,5-a]pyrimidines-based fluorophores: a comprehensive theoretical-experimental study. RSC Adv 10:39542–39552. https://doi.org/10.1039/D0RA07716J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abdel-Kader NS, Abdel-Latif SA, El-Ansary AL, Sayed AG (2019) Combined experimental, DFT theoretical calculations and biological activity of sulfaclozine azo dye with 1-hydroxy-2-naphthoic acid and its complexes with some metal ions. New J Chem 43:17466–17485. https://doi.org/10.1039/C9NJ04594E

    Article  CAS  Google Scholar 

  26. Geerlings P, Chamorro E, Chattaraj PK et al (2020) Conceptual density functional theory: status, prospects, issues. Theoret Chem Acc 139:36. https://doi.org/10.1007/s00214-020-2546-7

    Article  CAS  Google Scholar 

  27. Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Conceptual DFT: chemistry from the linear response function. Chem Soc Rev 43:4989–5008. https://doi.org/10.1039/C3CS60456J

    Article  CAS  PubMed  Google Scholar 

  28. Geerlings P, Fias S, Stuyver T et al (2019) New insights and horizons from the linear response function in conceptual DFT. In: Glossman-Mitnik D (ed) Density Functional Theory. IntechOpen, Rijeka

    Google Scholar 

  29. Azofra LM, Elguero J, Alkorta I (2020) A conceptual DFT study of phosphonate dimers: dianions supported by H-bonds. J Phys Chem A 124:2207–2214. https://doi.org/10.1021/acs.jpca.9b10681

    Article  CAS  PubMed  Google Scholar 

  30. Rangel J, Díaz-Uribe C, Rodriguez-Serrano A et al (2017) Three-component one-pot synthesis of novel pyrido[2,3-d]pyrimidine indole substituted derivatives and DFT analysis. J Mol Struct 1137:431–439. https://doi.org/10.1016/j.molstruc.2017.02.038

    Article  CAS  Google Scholar 

  31. Miranda-Quintana R (2018) Density functional theory for chemical reactivity. In: Islam N, Kaya S (eds) Conceptual density functional theory and its application in the chemical domain, 1st Edition. Apple Academic Press

  32. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050. https://doi.org/10.1021/ja00326a036

    Article  CAS  Google Scholar 

  33. Miranda-Quintana RA, Ayers PW (2016) Fractional electron number, temperature, and perturbations in chemical reactions. Phys Chem Chem Phys 18:15070–15080. https://doi.org/10.1039/C6CP00939E

    Article  CAS  PubMed  Google Scholar 

  34. Bochicchio RC, Miranda-Quintana RA, Rial D (2013) Communication: Reduced density matrices in molecular systems: Grand-canonical electron states. J Chem Phys 139:191101. https://doi.org/10.1063/1.4832495

    Article  CAS  PubMed  Google Scholar 

  35. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212. https://doi.org/10.1021/jp046577a

    Article  CAS  PubMed  Google Scholar 

  36. Guégan F, Tognetti V, Joubert L et al (2016) Towards the first theoretical scale of the trans effect in octahedral complexes. Phys Chem Chem Phys 18:982–990. https://doi.org/10.1039/C5CP04982B

    Article  CAS  PubMed  Google Scholar 

  37. De Proft F, Forquet V, Ourri B et al (2015) Investigation of electron density changes at the onset of a chemical reaction using the state-specific dual descriptor from conceptual density functional theory. Phys Chem Chem Phys 17:9359–9368. https://doi.org/10.1039/C4CP05454G

    Article  CAS  PubMed  Google Scholar 

  38. Miranda-Quintana RA, González MM, Hernández-Castillo D et al (2017) Conceptual DFT analysis of the regioselectivity of 1,3-dipolar cycloadditions: nitrones as a case of study. J Mol Model 23:236. https://doi.org/10.1007/s00894-017-3382-0

    Article  CAS  PubMed  Google Scholar 

  39. Burboa-Schettino P, Bustos C, Molins E et al (2020) Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response. Arab J Chem 13:6412–6424. https://doi.org/10.1016/j.arabjc.2020.05.042

    Article  CAS  Google Scholar 

  40. Bertolasi V, Pretto L, Ferretti V et al (2006) Interplay between steric and electronic factors in determining the strength of intramolecular N-H...O resonance-assisted hydrogen bonds in β-enaminones. Acta Crystallogr B 62:1112–1120. https://doi.org/10.1107/S0108768106036421

    Article  CAS  PubMed  Google Scholar 

  41. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  42. Burla MC, Caliandro R, Carrozzini B et al (2015) Crystal structure determination and refinement via SIR2014. J Appl Crystallogr 48:306–309. https://doi.org/10.1107/S1600576715001132

    Article  CAS  Google Scholar 

  43. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian 09 (2009) Gaussian, Inc., Wallingford CT

  45. Galván M, Gázquez JL, Vela A (1986) Fukui function: Spin-density and chemical reactivity. J Chem Phys 85:2337–2338. https://doi.org/10.1063/1.451083

    Article  Google Scholar 

  46. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theoret Chim Acta 44:129–138. https://doi.org/10.1007/BF00549096

    Article  CAS  Google Scholar 

  47. Verstraelen TTP, Heidar Zadeh F, Boguslawski K, Chan M, Zhao Y, Kim TD, Vandenbrande S, Yang XD, Gonzalez-Espinoza CE, Fias S, Limacher PA, Berrocal D, Malek A, Ayers PW (2015) http://theochem.github.com/horton/

  48. Bustos C, Schott E, Rios M et al (2009) Facile synthesis of isoxazoles and pyrazoles from β-diketohydrazones. J Chil Chem Soc 54:267–268. https://doi.org/10.4067/S0717-97072009000300013

    Article  CAS  Google Scholar 

  49. Faundez-Gutierrez R, Macleod-Carey D, Zarate X et al (2014) Synthesis, characterization and DFT study of a new family of pyrazole derivatives. Polyhedron 81:414–420. https://doi.org/10.1016/j.poly.2014.06.003

    Article  CAS  Google Scholar 

  50. Bustos C, Alvarez-Thon L, Molins E et al (2018) Tuning the molecular/electronic structure of new substituted pyrazoles: Synthesis, biological trials, theoretical approaches and Hammett correlations. J Mol Struct 1171:349–361. https://doi.org/10.1016/j.molstruc.2018.05.088

    Article  CAS  Google Scholar 

  51. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195. https://doi.org/10.1021/cr00002a004

    Article  CAS  Google Scholar 

  52. Takahata Y, Chong DP (2005) Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. Int J Quant Chem 103:509–515. https://doi.org/10.1002/qua.20533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grants Fondecyt 1180565, 1201880, 11200677, and 3210559. ANID/FONDAP/15110019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ximena Zarate or Eduardo Schott.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, P.D., Castillo-Rodriguez, J., Tapia, J. et al. A novel series of pyrazole derivatives toward biological applications: experimental and conceptual DFT characterization. Mol Divers 26, 2443–2457 (2022). https://doi.org/10.1007/s11030-021-10342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10342-z

Keywords

Navigation