Skip to main content
Log in

Camphor nitroimine: a key building block in unusual transformations and its applications in the synthesis of bioactive compounds

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The development of new drugs requires a lot of time and high financial investments. It involves a research network in which there is the participation of several researchers from different areas. For a new drug to reach the market, thousands of substances must be evaluated. There are several tools for this and the use of suitable building blocks can facilitate the process by allowing a lead compound to have suitable parameters. These compounds are key structures containing special functional groups that also permit adequate synthetic transformations, leading to several structures of interest in a short period of time. In this review, the use of camphor nitroimine as a potential key building block is explored. Derived from camphor, an abundant natural product present in various plant species, this nitroimine has proved to be quite versatile, allowing the access to substances with miscellaneous biological activities, ligands to asymmetric catalysis, asymmetric oxidants, O–N transfer agents and other applications. Its easy conversion to camphecene and other derivatives is described, as well as their applications in medicinal chemistry. Druglikeness analyses were performed on these studied agents as well as on their bioactive derivatives in order to assess their use in the development of potential drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this research are available within the article.

Notes

  1. http://www.iphar.ru/en/investitsionnye-proekty/klinicheskij-etap/protivovirusni-preparat/protivovirusnyj-preparat-etapy-proekta/

  2. http://www.swissadme.ch/index.php

References

  1. Shen J (2016) How to start a business and thrive in the global market: A story from U.S./Taiwan/China. ACS Symp Ser 12:109–115

    Article  Google Scholar 

  2. Wermuth C, Aldous D, Raboisson P, Rognan D (2015) The practice of medicinal chemistry. Academic Press, Amsterdam

    Google Scholar 

  3. Liu R, Li X, Lam KS (2017) Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 38:117–126. https://doi.org/10.1016/j.cbpa.2017.03.017

  4. Capurro P, Basso A (2020) Chemical reactions for building small molecules. In: Small molecule drug discovery. Elsevier, pp 35-82. https://doi.org/10.1016/B978-0-12-818349-6.00002-9

  5. Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Domling A (2021) Combining high-throughput synthesis and high-throughput protein crystallography for accelerated hit identification. Angew Chem Int Ed 60:18231–18239. https://doi.org/10.1002/anie.202105584

    Article  CAS  Google Scholar 

  6. Younus HA, Al-Rashida M, Hameed A, Uroos M, Salar U, Rana S, Khan KM (2021) Multicomponent reactions (MCR) in medicinal chemistry: a patent review (2010–2020). Exp Oper Ther Pat 31:267–289. https://doi.org/10.1080/13543776.2021.1858797

  7. Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA Jr, Fisher J, Jansen JM, Duca JS, Rush TS, Zentgraf M, Hill JE, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C, Schneider G (2020) Rethinking drug design in the artificial intelligence era. Nat Rev Drug Disc 19:353–364. https://doi.org/10.1038/s41573-019-0050-3

    Article  CAS  Google Scholar 

  8. Lima LM, Barreiro EJ (2005) Bioisosterism: a useful strategy for molecular modification and drug design. Cur Med Chem 12:23–49. https://doi.org/10.2174/0929867053363540

    Article  CAS  Google Scholar 

  9. Lima LM, Alves MA, do Amaral DM (2019) Homologation: a versatile molecular modification strategy to drug discovery. Cur Top Med Chem 19:1734–1750. https://doi.org/10.2174/1568026619666190808145235

  10. Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML (2019) Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Cur Top Med Chem 19:1694–1711. https://doi.org/10.2174/1568026619666190619115735

    Article  CAS  Google Scholar 

  11. Pennington LD, Aquila BM, Choi Y, Valiulin RA, Muegge I (2020) Positional analogue scanning: an effective strategy for multiparameter optimization in drug design. J Med Chem 63:8956–8976. https://doi.org/10.1021/acs.jmedchem.9b02092

    Article  CAS  PubMed  Google Scholar 

  12. Goldberg FW, Kettle JG, Tomkinson NP, Kogej TP, Matthew WD (2015) Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov Today 20:11–17. https://doi.org/10.1016/j.drudis.2014.09.023

    Article  PubMed  Google Scholar 

  13. Meier K, Bühlmann S, Arús-Pous J, Reymond J-L (2020) The generated databases (GDBs) as a source of 3D-shaped building blocks for use in medicinal chemistry and drug discovery. Chimia 74:241–246. https://doi.org/10.2533/chimia.2020.241

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Hou T (2010) Drug and drug candidate building block analysis. J Chem Inf Model 50:55–67

    Article  PubMed  Google Scholar 

  15. Li JJ, Yang M (2021) Drug discovery with privileged building blocks. In: Tactics in medicinal chemistry. CRC Press, Taylor & Francis Group, Oxfordshire (forthcoming)

  16. Chen W, Vermaak I, Viljoen A (2013) Camphor—a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon—a review. Molecules 18:5434–5454. https://doi.org/10.3390/molecules18055434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Z-J, Yao J, Tao Q, Jiang L, Lu T-B (2013) Enantioselective recognition and separation of racemic 1-Phenylethanol by a pair of 2D chiral coordination polymers. Inorg Chem 52:11694–11696. https://doi.org/10.1021/ic4021367

    Article  CAS  PubMed  Google Scholar 

  18. Clark RL, Wenzel BT, Wenzel TJ (2013) Diamagnetic lanthanide tris β-diketonate complexes with aryl-containing ligands as chiral NMR discriminating agentes. Tetrahedron As 24:297–304. https://doi.org/10.1016/j.tetasy.2013.01.021

  19. Mciteka LP, Lobb KA, Kaye PT (2016) Synthesis of camphor-derived chiral auxiliaries and their application in asymmetric Morita-Baylis-Hillman reactions. ARKIVOC 151–163. https://doi.org/10.3998/ark.5550190.p009.737

  20. Shokova EA, Kim JK, Kovalev VV (2016) Camphor and its derivatives. Unusual transformations and biological activity. Russian J Org Chem 52:459–488. https://doi.org/10.1134/S1070428016040011

    Article  CAS  Google Scholar 

  21. Zielinska-Błajet M, Feder-Kubis J (2020) Monoterpenes and their derivatives—recent development in biological and medical applications. Int J Mol Sci 21:7078. https://doi.org/10.3390/ijms21197078

    Article  CAS  PubMed Central  Google Scholar 

  22. Calderini E, Drienovska I, Myrtollari K, Pressnig M, Sieber V, Schwab H, Hofer M, Kourist R (2021) Simple plug-in synthetic step for the synthesis of (−)-Camphor from renewable starting materials. ChemBioChem 22:1–7. https://doi.org/10.1002/cbic.202100187

    Article  CAS  Google Scholar 

  23. Tucker AO, Maciarello MJ (1990) Essential oils of cultivars of Dalmatian sage (Salvia officinalis L.). J Essential Oil Res 2:139–144. https://doi.org/10.1080/10412905.1990.9697844

    Article  CAS  Google Scholar 

  24. Angeli A, Rimini E (1895) Action of nitrous acid on oximes of the camphor (camphane) series. Ber Dtsch Chem Ges 28:1077–1078. https://doi.org/10.1002/cber.189502801231

    Article  CAS  Google Scholar 

  25. Scholl R (1904) To the knowledge of the nitrimine and nitrimine acid. Justus Liebigs Ann Chem 33:1–35

    Article  Google Scholar 

  26. Suggitt JW, Myers GS, Wright GF (1947) Furfuralnitrimine. J Org Chem 12:373–378. https://doi.org/10.1021/jo01167a003

    Article  CAS  PubMed  Google Scholar 

  27. Brooks SG, Evan RM, Green GFH, Hunt JS, Long AG, Mooney B, Wyman LJ (1958) Use of 20-oximes and 20-semicarbaxones in making cortisol and 4,5a-dihydrocortisol. J Chem Soc 4614–4628. https://doi.org/10.1039/JR9580004614

  28. Freeman JP (1961) The structure of pernitroso compounds of t-alkyl ketones. J Org Chem 26:4190–4193. https://doi.org/10.1021/jo01069a002

    Article  CAS  Google Scholar 

  29. Cameron TS, Cordes RE, Morris DG, Murray AM (1979) Crystal and molecular structure of 4, N-dinitrobornan-2-imine (4, N-dinitrocamphorimine). J Chem Soc Perkin Trans 2:300–303. https://doi.org/10.1039/p29790000300

    Article  Google Scholar 

  30. Adamopoulos S, Boulton AJ, Tadayoni R, Webb GA (1987) On the formation and nitrogen nuclear magnetic resonance spectra of some nitrimines ('pernitroso-ketones’), and the mechanism of oxime cleavage by nitrous acid. J Chem Soc Perkin Trans I:2073–2077

    Article  Google Scholar 

  31. Narayanan CR, Ramaswamy PS, Wadia MS (1977) A simple method to regenerate ketones from their oximes. Chem Ind 11:454–455

    Google Scholar 

  32. Buchi G, Wuest H (1979) Transformation of nitrimines to acetylenes and allenes. 1,3 rearrangement of N-nitroenamines to C-nitro compounds. J Org Chem 44:4116–4120 and cited references. https://doi.org/10.1021/jo01337a021

  33. Beard JC, Swager TM (2021) An organic chemist’s guide to N-nitrosamines: their structure, reactivity, and role as contaminants. J Org Chem 86:2037–2057. https://doi.org/10.1021/acs.joc.0c02774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. White EH, Wilson AA, Anhalt JP, Baumgarten RJ, Choca JI (1982) Intramolecular conversion of N-nitroso ketimines into ketones and nitrogen. 1,2,3-oxadiazetines as analogues of dioxetanes. J Org Chem 47:2892–2896. https://doi.org/10.1021/jo00136a016

    Article  CAS  Google Scholar 

  35. da Silva ET, Moraes AM, Araújo AS, de Souza MVN (2018) Preparation of N-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)nitramide. Org Synth 95:192–204. https://doi.org/10.15227/orgsyn.95.0192

  36. Guziec Jr FS, Russo JM (1984) A convenient method of conversion of sterically hindered ketones into imines. Synthesis 479–481

  37. Ranise A, Bondavalli F, Schenone P (1985) Reactions of the potassium salt of 1,7,7-trimethyl-N-nitrobicyclo[2.2.1]heptan-2-imine with bromine and nitrous acid: synthesis of 3-exo-bromo-1,7,7-trimethyl-N-nitrobicyclo[2.2.1] heptan-2-imine, 3-endo-Bromo-1,7,7-trimethyl-N-nitrobicyclo[2.2.1]heptan-2-imine, 1,7,7-Trimethyl -N-nitro-3-nitrosobicyclo[2.2.1]hept-2-en-2-amine and their reactions with nitrogen nucleophiles. J Chem Soc Perkin Trans I:1251–1255

    Article  Google Scholar 

  38. Kocienski PJ, Kirkup M (1975) Reaction of nitrimines with cyanide ions. J Org Chem 40:1681–1682. https://doi.org/10.1021/jo00899a050

    Article  CAS  Google Scholar 

  39. Schenone P (1964) Reactions between pernitroso derivatives of terpenoid ketones and compounds with reactive methylene groups. Atti Accad Ligure Sci Lettere 21:202–207

    CAS  Google Scholar 

  40. Trost BM, Marrs CM (1993) A [3+2] cycloaddition and [4+3] cycloaddition approach to N-heterocycles via palladium-catalyzed TMM reactions with imines. J Am Chem Soc 115:6636–6645. https://doi.org/10.1021/ja00068a021

    Article  CAS  Google Scholar 

  41. Angeles-Dunham VV, Nickerson DM, Ray DM, Mattson AE (2014) Nitrimines as reagents for metal-free formal C(sp2)-C(sp2) cross-coupling reactions. Angew Chem 53:14538–14541. https://doi.org/10.1002/anie.201408613

    Article  CAS  Google Scholar 

  42. Nickerson DM, Angeles VV, Mattson AE (2013) Urea activation of nitrimines: a mild, metal-free approach to sterically hindered enamines. Org Lett 15:5000–5003. https://doi.org/10.1021/ol402310b

    Article  CAS  PubMed  Google Scholar 

  43. Gao H, Zhou Z, Kwon D-H, Coombs J, Jones S, Behnke NE, Ess DH, Kurti L (2017) Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds. Nat Chem 9:681–688. https://doi.org/10.1038/nchem.2672

    Article  CAS  PubMed  Google Scholar 

  44. Morris DG (1971) Nuclear polarization in the Martynoff rearrangement of nitrones. J Chem Soc D Chem Comm 221–221. https://doi.org/10.1039/c29710000221

  45. Maier O, Frohlich R., Wurthwein E-U (2001) Unsaturated hetero chains, X. Polydonor-substituted 1-oxa- and 1-thia-3,5-diazahexatrienes: synthesis, structures, ring-chain tautomerism and theoretical calculations. Eur J Org Chem 83–92. https://doi.org/10.1002/1099-0690(200101)2001:1%3C83::AID-EJOC83%3E3.0.CO;2-Z

  46. Grytsai OV, Gorichko MV, Golovko VB (2013) Rearrangement of chiral 1-bromo-N-nitrobicyclo[2.2.1]heptan-2-imines. Tetrahed As 24:817–821. https://doi.org/10.1016/j.tetasy.2013.06.001

    Article  CAS  Google Scholar 

  47. Mariani E, Bondavalli F, Schenone P, Benincasa T, Vitagliano S, Marmo E (1989) Amides of 1,3,3-trimethyl-N-[(2-pyridyl)methyl]-2-oxabicyclo[2.2.2]octan-6-amine with depressant and antiarrhythmic activities. Farmaco 44:503–510

    CAS  PubMed  Google Scholar 

  48. Martinez-Pascual R, Meza-Reyes S, Vega-Baez JL, Merino-Montiel P, Padron JM, Mendoza A, Montiel-Smith S (2017) Novel synthesis of steroidal oximes and lactams and their biological evaluation as antiproliferative agents. Steroids 122:24–33. https://doi.org/10.1016/j.steroids.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  49. Li JJ (2004) Product class 20: N-nitroimines and N-nitrosoimines. Sci Syn 27:825–842.´https://doi.org/10.1055/sos-SD-027-00722

  50. Winters LJ, Fischer JF, Ryan E (1971) Photolysis and pyrolysis of camphor nitrimine. Tetrahed Lett 129–132. https://doi.org/10.1016/S0040-4039(01)96377-4

  51. Bondavalli F, Schenone P, Ranise A (1979) The reaction of terpenoid nitrimines with secondary amines; a new route to terpenoid enamines. Synthesis 830–832, and cited references

  52. Ranise A, Bondavalli F, Schenone P, Sancassan F, Mugnoli A (1988) 3-(Hydroxyimino)camphornitrimine and camphorquinone dinitrimine, compounds previously described as N-nitro-3-nitrosocamphorenamine and N-nitro-N,N-3-initrosocamphorenamine. Crystal structure of camphorquinone dinitrimine. J Chem Res Synop 282–283

  53. Ranise A, Bondavalli F, Schenone P (1989) Reactivity of 3-(hydroxyimino)-1,7,7-trimethyl-N-nitrobicyclo[2.2.1]heptan-2-imine (3-hydroxyiminocamphornitrimine) J Chem Res Synop 96–97

  54. Ranise A, Bondavalli F, Schenone P (1992) Synthesis and reactivity of (1S, 4R)-5-(hydroxyimino)-1, 3, 3-trimethyl-N-nitro-2-oxabicyclo[2.2.2]octan-6-imine. J Chem Res Synop 54–54

  55. Ranise A, Bondavalli F, Schenone P, Mugnoli A, Pani M (1990) Synthesis and reactivity of (1S, 4S, 5S)-5-bromo-1, 3, 3-trimethyl-N-nitro-2-oxabicyclo[2.2.2]octan-6-imine. X-ray molecular structure and absolute configuration of E and Z isomers of (1S, 4S)-5,5-dibromo-1,3,3-trimethyl-N-nitro-2-oxabicyclo[2.2.2]octan-6-imine, the first case of separated nitrimine isomers. J Chem Soc Perkin Trans 1 Org Bio-Org Chem 3053–3059

  56. Lalk M, Peseke K, Reinke H (1999) Bornane with integrated push–pull butadienes. J Prakt Chem 341:552–556. https://doi.org/10.1002/(SICI)1521-3897(199908)341:6%3C552::AID-PRAC552%3E3.0.CO;2-8

    Article  CAS  Google Scholar 

  57. Squire MD, Burwell A, Ferrence GM, Hitchcock SR (2002) Enantiomerically enriched vic-amino alcohols from 2-iminobornanes. Tetrahedron As 13:1849–1852. https://doi.org/10.1016/S0957-4166(02)00486-X

    Article  CAS  Google Scholar 

  58. Parrott RW, Hitchcock SR (2008) β-Amino alcohols derived from (1R,2S)-norephedrine and (1S,2S)-pseudonorephedrine as catalysts in the asymmetric addition of diethylzinc to aldehydes. Tetrahedron As 19:19–26. https://doi.org/10.1016/j.tetasy.2007.11.027

    Article  CAS  Google Scholar 

  59. Page PCB, Murrell VL, Limousin C, Laffan DDP, Bethell D, Slawin AMZ, Smith TAD (2000) The first stable enantiomerically pure chiral N-H oxaziridines: synthesis and reactivity. J Org Chem 65:4204–4207. https://doi.org/10.1021/jo000176j

    Article  CAS  PubMed  Google Scholar 

  60. Page PCB, Limousin C, Murrell VM (2002) Asymmetric electrophilic amination of various carbon nucleophiles with enantiomerically pure chiral N-H oxaziridines derived from Camphor and Fenchone. J Org Chem 67:7787–7796. https://doi.org/10.1021/jo020306j

    Article  CAS  Google Scholar 

  61. Maharramov A, Kurbanova M, Taslimi P, Demir Y, Safarova A, Huseyinov E, Sujayev A, Alwasel SH, Gulcin I (2021) Synthesis, characterization, crystal structure and bioactivities of novel enamine and pyrrole derivatives endowed with acetylcholinesterase, α-glycosidase and human carbonic anhydrase inhibition effects. Org Comm 14:144–156. https://doi.org/10.25135/acg.oc101.21.04.2029

  62. Akbaba Y, Bastem E, Topal E, Gülçin I, Maraş A, Göksu S (2014) Synthesis and carbonic anhydrase inhibitory effects of novel sulfamides derived from 1-aminoindanes and anilines. Arch Pharm Life Sci 347:950–957. https://doi.org/10.1002/ardp.201400257

    Article  CAS  Google Scholar 

  63. Gorichko MV, Grygorenko OO, Komarov IV (2002) A chiral tricyclic proline analog obtained from camphor. Tetrahed Lett 43:9411–9412. https://doi.org/10.1016/S0040-4039(02)02325-0

    Article  CAS  Google Scholar 

  64. da Silva ET, Araújo AS, Moraes AM, de Souza LA, Lourenço MCS, de Souza MVN, Wardell JL, Wardell SMSV (2016) Synthesis and biological activities of Camphor hydrazone and imine derivatives. Sci Pharm 84:467–483. https://doi.org/10.3390/scipharm84030467

    Article  CAS  Google Scholar 

  65. Kucukoglu K, InciGul H, Taslimi P, Gulcin I, Supuran CT (2019) Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg Chem 86:316–321. https://doi.org/10.1016/j.bioorg.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  66. Brum JOC, França TCC, LaPlante SR (2020) Villar JDF (2020) Synthesis and biological activity of hydrazones and derivatives: a review. Mini-Rev Med Chem 20(5):342–368. https://doi.org/10.2174/1389557519666191014142448

    Article  CAS  Google Scholar 

  67. Aboul-Eneina MN, EL-Azzounya AA, Maklada YA, Sokeirika YS, Safwat H, (2006) Synthesis of certain 1,7,7-Trimethyl-bicyclo[2.2.1]heptane derivatives with anticonvulsant, hypoglycemic and anti-inflammatory potential. J Iranian Chem Soc 3:191–208. https://doi.org/10.1007/BF03245949

    Article  Google Scholar 

  68. Bondavalli F, Bruno O, Ranise A, Schenone P, Susanna V, Lisa M, Maione S, Marmo E (1987) Esters of N-(2-hydroxy-1,1-dimethylethyl)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-exo-amine with hypotensive activity. Farmaco 42:947–953

    CAS  Google Scholar 

  69. Ranise A, Bondavalli F, Schenone P, Angrisani M, Lisa M, Marrazzo R, Marmo E (1988) Ureas and amides derived from N-(5-norbornen-2-ylmethyl) bornan-2-exo-amine with antiarrhythmic and other activities. Farmaco 43:79–89

    CAS  Google Scholar 

  70. Ranise A, Bondavalli F, Bruno O, Schenone P, Faillace G, Coluccino A, Filippelli W, Di Sarno A, Marmo E (1990) Dialkylaminoalkyl ethers of 3-exo-dialkylamino-(Z)-camphoroximes with antiarrhythmic and local anesthetic activities. Farmaco 45:187–202

    CAS  PubMed  Google Scholar 

  71. da Silva ET, Araujo AS, Moraes AM, de Souza MVN (2020) Multigram-scale synthesis of building block nitro-imine derivative by using classical method and ultrasound irradiation and conversion to imino-alcohol derivative, using camphor as starting material. Lett Org Chem 17:165–169. https://doi.org/10.2174/1570178616666190123114922

    Article  CAS  Google Scholar 

  72. Zarubaev VV, Garshinina AV, Tretiak TS, Fedorova VA, Shtro AA, Sokolova AS, Yarovaya OI, Salakhutdinov NF (2015) Broad range of inhibiting action of novel camphor-based compound with anti-hemagglutinin activity against influenza viruses in vitro and in vivo. Antivir Res 120:126–133. https://doi.org/10.1016/j.antiviral.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  73. Sokolova AS, Yarovaya OI, Shernyukov AV, Gatilov YV, Razumova YV, Zarubaev VV, Tretiak TS, Pokrovsky AG, Kiselev OI, Salakhutdinov NF (2015) Discovery of a new class of antiviral compounds: Camphor imine derivatives. Eur J Med Chem 105:263–273. https://doi.org/10.1016/j.ejmech.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  74. Wei L, Steck EA (1964) Basically substituted camphanes. Can J Chem 42:2623–2625. https://doi.org/10.1139/v64-385

    Article  CAS  Google Scholar 

  75. Yarovaya OI, Sokolova AS, Tretyak TS, Zarubaev VV, Kiselev OI, Salakhutdinov NF (2014) RU 2530554, C1 20141010

  76. Babina AV, Lavrinenko VA, Yarovaya OI, Salakhutdinov NF (2017) Effect of new antiviral agent Camphecin on behavior of mice. Bull Exp Biol Med 162:346–348. https://doi.org/10.1007/S10517-017-3612-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zarubaev VV, Pushkina EA, Borisevich SS, Galochkina AV, Garshinina AV, Shtro AA, Egorova AA, Sokolova AS, Yarovaya OI, Salakhutdinov NF (2018) Selection of influenza virus resistant to the novel camphor-based antiviral Camphecene results in loss of pathogenicity. Virology 524:69–77. https://doi.org/10.1016/j.virol.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  78. Borisevich SS, Gureev MA, Yarovaya II, Zarubaev VV, Kostin GA, Porozov YB, Salakhutdinov NF (2021) Can molecular dynamics explain decreased pathogenicity in mutant Camphecene-resistant influenza virus? J Biomol Struct Dyn 1–12. https://doi.org/10.1080/07391102.2020.1871414

  79. Rogacheva AD, Yarovayaa OI, Ankova SV, Khvostova MV, Tolstikovaa TG, Pokrovskyb AG, Salakhutdinov NF (2016) Development and validation of ultrafast LC–MS/MS method for quantification of anti-influenza agent Camphecene in whole rat bloodusing dried blood spots and its application to pharmacokinetic studies. J Chromatogr B 1036:136–141. https://doi.org/10.1016/j.jchromb.2016.10.009

    Article  CAS  Google Scholar 

  80. Rogachev AD, Yarovaya OI, Fatianova AV, Lavrinenko VA, Amosov EV, Zarubaev VV, Pokrovsky AG, Salakhutdinov NF (2018) Untargeted search and identification of metabolites of antiviral agent Camphecene in rat urine by liquid chromatography and mass spectrometry and studying their distribution in organs following per oral administration of the compound. J Pharm Biomed Anal 161:383–392. https://doi.org/10.1016/j.jpba.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  81. Chernyshov VV, Yarovaya OI, Fadeev DS, Gatilov YV, Esaulkova YL, leva AS, Sinegubova KO, Zarubaev VV, Salakhutdinov NF, (2020) Single-stage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity. Mol Divers 24:61–67. https://doi.org/10.1007/s11030-019-09932-9

    Article  CAS  PubMed  Google Scholar 

  82. Artyushin OI, Sharova EV, Vinogradova NM, Genkina GK, Moiseeva AA, Klemenkova ZS, Orshanskaya IR, Shtro AA, Kadyrova RA, Zarubaev VV, Yarovaya OI, Salakhutdinov NF, Brel VK (2017) Synthesis of Camphecene derivatives using click chemistry methodology and study of their antiviral activity. Bioorg Med Chem Lett 27:2181–2184. https://doi.org/10.1016/j.bmcl.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  83. Brel VK, Artyushin OI, Moiseeva AA, Sharova EV, Buyanovskaya AG, Nelyubina YV (2020) Functionalization of bioactive substrates with a F5SCH = CH moiety. J Sulfur Chem 41:29–43. https://doi.org/10.1080/17415993.2019.1662906

    Article  CAS  Google Scholar 

  84. Yarovaya OI, Sokolova AS, Mainagashev IY, Volobueva AS, Lantseva K, Borisevich SS, Shtro AA, Zarubaev VV, Salakhutdinov NF (2019) Synthesis and structure-activity relationships of novel Camphecene analogues as anti-influenza agents. Bioorg Med Chem Lett 29:126745. https://doi.org/10.1016/j.bmcl.2019.126745

    Article  CAS  PubMed  Google Scholar 

  85. Sokolova A, Pavlova A, Komarova N, Ardashov O, Shernyukov A, Gatilov Y, Yarovaya O, Tolstikova T, Salakhutdinov N (2016) Synthesis and analgesic activity of new a-truxillic acid derivatives with monoterpenoid fragments. Med Chem Res 25:1608–1615. https://doi.org/10.1007/s0044-016-1593-z

    Article  CAS  Google Scholar 

  86. Artyushin OI, Moiseeva AA, Zarubaev VV, Slita AV, Galochkina AV, Muryleva AA, Borisevich SS, Yarovaya OI, Salakhutdinov NF, Brel VK (2019) Synthesis of Camphecene and cytisine conjugates using click chemistry methodology and study of their antiviral activity. Chem Biodiversity 16:e1900340. https://doi.org/10.1002/cbdv.201900340

    Article  CAS  Google Scholar 

  87. Khizrieva SS, Vetrova EV, Borisenko SN, Maksimenko EV, Borisenko NI (2020) Synthesis and study of complexes of the novel Russian antiviral drug Camphecene with pentacyclic triterpenes of licorice. Chimica Techno Acta 7:192–198. https://doi.org/10.15826/chimtech.2020.7.4.10

  88. Gavrilov K, Tsarev V, Zheglov S, Korlyukov A, Antipin M, Davankov V (2007) P, N-bidentate phosphites with a chiral ketimine fragment, their application in enantioselective allylic substitution and comparison with phosphine analogues. Synthesis 11:1717–1723. https://doi.org/10.1055/s-2007-966066

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

ETS had the idea for the article, performed the literature search and drafted the work; LS performed the literature search and data analysis and revised the work; GFA performed the literature search and data analysis and revised the work; EJRR performed the literature search and revised the work; and MVNS had the idea for the article, performed the data analysis, revised critically the work and gave final approval of the version to be published.

Corresponding author

Correspondence to Marcus Vinícius Nora de Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, financial or non-financial interests to disclose.

Consent to participate for publication

All authors consented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 175 KB)

Supplementary file2 (PDF 12253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.T., da Silva Santos, L., de Andrade, G.F. et al. Camphor nitroimine: a key building block in unusual transformations and its applications in the synthesis of bioactive compounds. Mol Divers 26, 3463–3483 (2022). https://doi.org/10.1007/s11030-021-10341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10341-0

Keywords

Navigation