Skip to main content
Log in

Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The overexpression of cyclin D1 and cyclin E due to their oncogenic potential and amplification has been associated with a higher mortality rate in many cancers. The deguelin is a natural compound, has shown promising anti-cancer activity by directly binding cyclin D1 and cyclin E and thus suppressing its function. The C7a atomic position of deguelin structure contains a proton that generates stabilized radical, as a result, decomposed deguelin reduces its structural stability and significantly decreases its biological activity. To design deguelin derivatives with the reduced potential side effect, series of B, C-ring truncated derivatives were investigated as cyclin D1 and cyclin E inhibitors. R-group-based enumeration was implemented in the deguelin scaffold using the R-group enumeration module of Schrödinger. Drug-Like filters like, REOS and PAINs series were applied to the enumerated compound library to remove compounds containing reactive functional groups. Further, screened compounds were docked within the ligand-binding cavity of cyclin D1 and cyclin E crystal structure, using Glide SP and XP protocol to obtain docking poses. Enrichment calculations were done using SchrÖdinger software, with 1000 decoy compounds (from DUD.E database) and 60 compounds (XP best poses) along with deguelin, to validate the docking protocol. The receiver operating characteristic (ROC) curve indicates R2 = 0.94 for cyclin D1 and R2 = 0.79 for cyclin E, suggesting that the docking protocol is valid. Besides, we explored molecular dynamics simulation to probe the binding stability of deguelin and its derivatives within the binding cavity of cyclin D1 and cyclin E structures which are associated with the cyclin D1 and cyclin E inhibitory mechanism.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this article.

Data availability

The docking structures are available upon request from the corresponding author.

References

  1. Tuli HS, Mittal S, Loka M, Aggarwal V, Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, Sethi G, Bishayee A (2021) Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol Res 166:105487. https://doi.org/10.1016/j.phrs.2021.105487

    Article  CAS  PubMed  Google Scholar 

  2. Azevedo-Barbosa H, Ferreira-Silva GÁ, Silva CF, de Souza TB, Dias DF, de Paula A, Ionta M, Carvalho DT (2019) Phenylpropanoid-based sulfonamide promotes cyclin D1 and cyclin E down-regulation and induces cell cycle arrest at G1/S transition in estrogen positive MCF-7 cell line. Toxicol In Vitro: Int J Publ Assoc BIBRA 59:150–160. https://doi.org/10.1016/j.tiv.2019.04.023

    Article  CAS  Google Scholar 

  3. Liao W, Liu X, Yang Q, Liu H, Liang B, Jiang J, Huang J, Ning C, Zang N, Zhou B, Liao Y, Chen J, Tian L, Ho W, Abdullah AS, Kong L, Liang H, Chen H, Ye L (2020) Deguelin inhibits HCV replication through suppressing cellular autophagy via down regulation of Beclin1 expression in human hepatoma cells. Antiviral Res 174:104704. https://doi.org/10.1016/j.antiviral.2020.104704

    Article  CAS  PubMed  Google Scholar 

  4. Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1(12):1257–1260. https://doi.org/10.1038/nm1295-1257

    Article  CAS  PubMed  Google Scholar 

  5. Wang F, Mao A, Tang J, Zhang Q, Yan J, Wang Y, Di C, Gan L, Sun C, Zhang H (2019) microRNA-16-5p enhances radiosensitivity through modulating Cyclin D1/E1-pRb-E2F1 pathway in prostate cancer cells. J Cell Physiol 234(8):13182–13190. https://doi.org/10.1002/jcp.27989

    Article  CAS  PubMed  Google Scholar 

  6. Bates S, Peters G (1995) Cyclin D1 as a cellular proto-oncogene. Semin Cancer Biol 6(2):73–82. https://doi.org/10.1006/scbi.1995.0010

    Article  CAS  PubMed  Google Scholar 

  7. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430(6996):226–231. https://doi.org/10.1038/nature02650

    Article  CAS  PubMed  Google Scholar 

  8. Hong SJ, Kim JT, Kim SJ, Cho NC, Kim K, Lee S, Suh YG, Cho KC, Kim KP, Surh YJ (2020) An electrophilic deguelin analogue inhibits STAT3 signaling in H-ras-transformed human mammary epithelial cells: the cysteine 259 residue as a potential target. Biomedicines 8(10):407. https://doi.org/10.3390/biomedicines8100407

    Article  CAS  PubMed Central  Google Scholar 

  9. Nguyen CT, La Thanh M, Ann J, Nam G, Park HJ, Min Park J, Kim YJ, Young Kim J, Hong Seo J, Lee J (2021) Discovery of a simplified deguelin analog as an HSP90 C-terminal inhibitor for HER2-positive breast cancer. Bioorg Med Chem Lett 45:128134. https://doi.org/10.1016/j.bmcl.2021.128134

    Article  CAS  PubMed  Google Scholar 

  10. Dou QP, Pardee AB, Keyomarsi K (1996) Cyclin E—a better prognostic marker for breast cancer than cyclin D? Nat Med 2(3):254. https://doi.org/10.1038/nm0396-254a

    Article  CAS  PubMed  Google Scholar 

  11. Strauss M, Lukas J, Bartek J (1995) Unrestricted cell cycling and cancer. Nat Med 1(12):1245–1246. https://doi.org/10.1038/nm1295-1245

    Article  CAS  PubMed  Google Scholar 

  12. Lewin B (1990) Driving the cell cycle: M phase kinase, its partners, and substrates. Cell 61(5):743–752. https://doi.org/10.1016/0092-8674(90)90181-d

    Article  CAS  PubMed  Google Scholar 

  13. Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7(8):1559–1571. https://doi.org/10.1101/gad.7.8.1559

    Article  CAS  PubMed  Google Scholar 

  14. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79(4):551–555. https://doi.org/10.1016/0092-8674(94)90540-1

    Article  CAS  PubMed  Google Scholar 

  15. McIntosh GG, Anderson JJ, Milton I, Steward M, Parr AH, Thomas MD, Henry JA, Angus B, Lennard TW, Horne CH (1995) Determination of the prognostic value of cyclin D1 overexpression in breast cancer. Oncogene 11(5):885–891

    CAS  PubMed  Google Scholar 

  16. Barbareschi M, Pelosio P, Caffo O, Buttitta F, Pellegrini S, Barbazza R, Dalla Palma P, Bevilacqua G, Marchetti A (1997) Cyclin-D1-gene amplification and expression in breast carcinoma: relation with clinicopathologic characteristics and with retinoblastoma gene product, p53 and p21WAF1 immunohistochemical expression. Int J Cancer 74(2):171–174. https://doi.org/10.1002/(sici)1097-0215(19970422)74:2%3c171::aid-ijc5%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  17. Galimberti F, Thompson SL, Liu X, Li H, Memoli V, Green SR, DiRenzo J, Greninger P, Sharma SV, Settleman J, Compton DA, Dmitrovsky E (2010) Targeting the cyclin E-Cdk-2 complex represses lung cancer growth by triggering anaphase catastrophe. Clin Cancer Res Off J Am Assoc Cancer Res 16(1):109–120. https://doi.org/10.1158/1078-0432.CCR-09-2151

    Article  CAS  Google Scholar 

  18. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM (1997) Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3(2):222–225. https://doi.org/10.1038/nm0297-222

    Article  CAS  PubMed  Google Scholar 

  19. Keyomarsi K, O’Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB (1994) Cyclin E, a potential prognostic marker for breast cancer. Can Res 54(2):380–385

    CAS  Google Scholar 

  20. Udeani GO, Zhao GM, Shin YG, Kosmeder JW 2nd, Beecher CW, Kinghorn AD, Moriarty RM, Moon RC, Pezzuto JM (2001) Pharmacokinetics of deguelin, a cancer chemopreventive agent in rats. Cancer Chemother Pharmacol 47(3):263–268. https://doi.org/10.1007/s002800000187

    Article  CAS  PubMed  Google Scholar 

  21. Izevbigie EB, Bryant JL, Walker A (2004) A novel natural inhibitor of extracellular signal-regulated kinases and human breast cancer cell growth. Exp Biol Med (Maywood, NJ) 229(2):163–169. https://doi.org/10.1177/153537020422900205

  22. Udeani GO, Gerhauser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD, Moriarty RM, Pezzuto JM (1997) Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Can Res 57(16):3424–3428

    CAS  Google Scholar 

  23. Murillo G, Kosmeder JW 2nd, Pezzuto JM, Mehta RG (2003) Deguelin suppresses the formation of carcinogen-induced aberrant crypt foci in the colon of CF-1 mice. Int J Cancer 104(1):7–11. https://doi.org/10.1002/ijc.10901

    Article  CAS  PubMed  Google Scholar 

  24. Xiong JR, Liu HL (2013) Regulatory effects of deguelin on proliferation and cell cycle of Raji cells. J Huazhong Univ Sci Technol. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen Ban 33(4):491–495. https://doi.org/10.1007/s11596-013-1147-2

  25. Nair AS, Shishodia S, Ahn KS, Kunnumakkara AB, Sethi G, Aggarwal BB (2006) Deguelin, an Akt inhibitor, suppresses IkappaBalpha kinase activation leading to suppression of NF-kappaB-regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion. J Immunol (Baltimore, MD 1950) 177(8):5612–5622. https://doi.org/10.4049/jimmunol.177.8.5612

  26. Kim WY, Chang DJ, Hennessy B, Kang HJ, Yoo J, Han SH, Kim YS, Park HJ, Seo SY, Mills G, Kim KW, Hong WK, Suh YG, Lee HY (2008) A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy. Cancer Prev Res (Philadelphia, PA) 1(7):577–587. https://doi.org/10.1158/1940-6207.CAPR-08-0184

  27. Cheng HM, Yamamoto I, Casida JE (1972) Rotenone photodecomposition. J Agric Food Chem 20:850–856

    Article  CAS  Google Scholar 

  28. An H, Lee S, Lee JM, Jo DH, Kim J, Jeong YS, Heo MJ, Cho CS, Choi H, Seo JH, Hwang S, Lim J, Kim T, Jun HO, Sim J, Lim C, Hur J, Ahn J, Kim HS, Seo SY, Na Y, Kim S-H, Lee J, Lee J, Chung S-J, Kim Y-M, Kim K-W, Kim SG, Kim JH, Suh YG (2018) Novel hypoxia-inducible factor 1α (HIF-1α) inhibitors for angiogenesis-related ocular diseases: discovery of a novel scaffold via ring-truncation strategy. J Med Chem 61(20):9266–9286. https://doi.org/10.1021/acs.jmedchem.8b00971

    Article  CAS  PubMed  Google Scholar 

  29. Day PJ, Cleasby A, Tickle IJ, O’Reilly M, Coyle JE, Holding FP, McMenamin RL, Yon J, Chopra R, Lengauer C, Jhoti H (2009) Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci USA 106(11):4166–4170. https://doi.org/10.1073/pnas.0809645106

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen P, Lee NV, Hu W, Xu M, Ferre RA, Lam H, Bergqvist S, Solowiej J, Diehl W, He YA, Yu X, Nagata A, VanArsdale T, Murray BW (2016) Spectrum and degree of CDK drug interactions predicts clinical performance. Mol Cancer Ther 15(10):2273–2281. https://doi.org/10.1158/1535-7163.MCT-16-0300

    Article  CAS  PubMed  Google Scholar 

  31. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  32. Rostkowski M, Olsson MH, Søndergaard CR, Jensen JH (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 11:6. https://doi.org/10.1186/1472-6807-11-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29(2):157–170. https://doi.org/10.1016/j.jmgm.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  34. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Jiang K, Zhu X, Lin G, Song F, Zhao Y, Piao Y, Liu J, Cheng W, Bi X, Gong P, Song Z, Meng S (2016) Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells. Cancer Lett 370(2):332–344. https://doi.org/10.1016/j.canlet.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  36. Cheng R, Liu YJ, Cui JW, Yang M, Liu XL, Li P, Wang Z, Zhu LZ, Lu SY, Zou L, Wu XQ, Li YX, Zhou Y, Fang ZY, Wei W (2017) Aspirin regulation of c-myc and cyclin D1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells. Oncotarget 8(18):30252–30264. https://doi.org/10.18632/oncotarget.16325

  37. Ali KH, Salih HK, Abdul-AL-Razzaq FS (2020) Preparation and biochemical study of one of glyceraldehyde derivative as a Possible prodrug. J Educ Sci Stud 16(5):181–200

    Google Scholar 

  38. Remsing Rix LL, Rix U, Colinge J, Hantschel O, Bennett KL, Stranzl T, Müller A, Baumgartner C, Valent P, Augustin M, Till JH, Superti-Furga G (2009) Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23(3):477–485. https://doi.org/10.1038/leu.2008.334

    Article  CAS  PubMed  Google Scholar 

  39. Bisi JE, Sorrentino JA, Roberts PJ, Tavares FX, Strum JC (2016) Preclinical characterization of G1T28: a novel CDK4/6 inhibitor for reduction of chemotherapy-induced myelosuppression. Mol Cancer Ther 15(5):783–793. https://doi.org/10.1158/1535-7163.MCT-15-0775

    Article  CAS  PubMed  Google Scholar 

  40. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, Zhang H, Zheng M, Luo J, Kang L, Liu X, Wang X, Jiang H (2009) An effective docking strategy for virtual screening based on multi-objective optimization algorithm. BMC Bioinform 10:58. https://doi.org/10.1186/1471-2105-10-58

    Article  CAS  Google Scholar 

  42. Carregal AP, Maciel FV, Carregal JB, Dos Reis Santos B, da Silva AM, Taranto AG (2017) Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database. J Mol Model 23(4):111. https://doi.org/10.1007/s00894-017-3253-8

    Article  CAS  PubMed  Google Scholar 

  43. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE conference on supercomputing (SC06), Tampa, Florida, 2006, November 11–17

  44. Kollar J, Frecer V (2017) How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach? J Mol Model 24(1):11. https://doi.org/10.1007/s00894-017-3537-z

    Article  CAS  PubMed  Google Scholar 

  45. Lokhande KB, Nagar S, Swamy KV (2019) Molecular interaction studies of Deguelin and its derivatives with Cyclin D1 and Cyclin E in cancer cell signaling pathway: the computational approach. Sci Rep 9(1):1778. https://doi.org/10.1038/s41598-018-38332-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  47. Bharadwaj S, Dubey A, Kamboj NK, Sahoo AK, Kang SG, Yadava U (2021) Drug repurposing for ligand-induced rearrangement of Sirt2 active site-based inhibitors via molecular modeling and quantum mechanics calculations. Sci Rep 11(1):10169. https://doi.org/10.1038/s41598-021-89627-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DYPBBI (Dr. D. Y. Patil Biotechnology and Bioinformatics Institute) Dr. D. Y. Patil Vidyapeeth Tathawade, Pune, for providing the infrastructure and facilities to perform this study. The authors also acknowledge the DST-SERB, Govt. of India, New Delhi, (File Number: YSS/2015/002035) for Optimized Supercomputer facility for dynamics calculations. Mr. Kiran Bharat Lokhande acknowledges the ICMR (Indian Council of Medical Research), New Delhi, India, for Senior Research Fellowship (Project ID: 2019-3458; file: ISRM/11(54)/2019). The authors acknowledge the support of the Bioinformatics Centre, Savitribai Phule Pune University, Pune, for providing Schrodinger software for free energy calculations. The authors also would like to acknowledge the support of Schrodinger and the team for providing an Evaluation License to our Bioinformatics Research Laboratory.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Venkateswara Swamy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Consent to participate

All participants and/or their legal guardians signed written informed consent before enrollment in the study.

Consent for publication

All authors approved the final version of the manuscript and the authorship list.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhande, K.B., Ghosh, P., Nagar, S. et al. Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Mol Divers 26, 2295–2309 (2022). https://doi.org/10.1007/s11030-021-10334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10334-z

Keywords

Navigation