Skip to main content

Advertisement

Log in

Novel tacrine-based acetylcholinesterase inhibitors as potential agents for the treatment of Alzheimer’s disease: Quinolotacrine hybrids

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new series of quinolotacrine hybrids including cyclopenta- and cyclohexa-quinolotacrine derivatives were designed, synthesized, and assessed as anti-cholinesterase (ChE) agents. The designed derivatives indicated higher inhibitory effect on the acetylcholinesterase (AChE) with IC50 values of 0.285–100 µM compared to butyrylcholinesterase (BChE) with IC50 values of > 100 µM. Of these compounds, cyclohexa-quinolotacrine hybrids displayed a little better anti-AChE activity than cyclopenta-quinolotacrine hybrids. Compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c'] diquinolin-6-one (6m) including 3-hydroxyphenyl and cyclohexane ring moieties exhibited the best AChE inhibitory activity with IC50 value of 0.285 µM. The kinetic and molecular docking studies indicated that compound 6m occupied both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE as a mixed inhibitor. Using neuroprotective assay against H2O2-induced cell death in PC12 cells, the compound 6h illustrated significant protection among the assessed compounds. In silico ADME studies estimated good drug-likeness for the designed compounds. As a result, these quinolotacrine hybrids can be very encouraging AChE inhibitors to treat Alzheimer’s disease.

Graphic abstract

A novel series of quinolotacrine hybrids were designed, synthesized, and evaluated against AChE and BChE enzymes as potential agents for the treatment of AD. The hybrids showed good to significant inhibitory activity against AChE (0.285–100 μM) compared to butyrylcholinesterase (BChE) with IC50 values of > 100 μM. Among them, compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c′] diquinolin-6-one (6 m) bearing 3-hydroxyphenyl moiety and cyclohexane ring exhibited the highest anti-AChE activity with IC50 value of 0.285 μM. The kinetic and molecular docking studies illustrated that compound 6 m is a mixed inhibitor and binds to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de la Fuente GS, Ritchie C, Luz S (2020) Artificial intelligence, speech, and language processing approaches to monitoring Alzheimer’s disease: a systematic review. J Alzheimers Dis 78:1547–1574. https://doi.org/10.3233/JAD-200888

    Article  Google Scholar 

  2. Rosin ER, Blasco D, Pilozzi AR, Yang LH, Huang X (2020) A narrative review of Alzheimer’s disease stigma. J Alzheimers Dis 78:515–528. https://doi.org/10.3233/JAD-200932

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perry-Young L, Owen G, Kelly S, Owens C (2018) How people come to recognize a problem and seek medical help for a person showing early signs of dementia: a systematic review and meta-ethnography. Dementia 17(1):34–60. https://doi.org/10.1177/1471301215626889

    Article  PubMed  Google Scholar 

  4. Smith AR, Mill J, Lunnon K (2020) The molecular etiology of Alzheimer’s disease. Brain Pathol 30:964–965. https://doi.org/10.1111/bpa.12879

    Article  PubMed  PubMed Central  Google Scholar 

  5. Decker AL, Duncan K (2020) Acetylcholine and the complex interdependence of memory and attention. Curr Opin Behav Sci 32:21–28. https://doi.org/10.1016/j.cobeha.2020.01.013

    Article  Google Scholar 

  6. De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ (2021) A comprehensive review of cholinesterase modeling and simulation. Biomolecules 11:580. https://doi.org/10.3390/biom11040580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greig NH, Lahiri DK, Sambamurti K (2002) Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 1:77–91. https://doi.org/10.1017/S1041610203008676

    Article  Google Scholar 

  8. Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891. https://doi.org/10.1016/S0896-6273(00)80108-7

    Article  CAS  PubMed  Google Scholar 

  9. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nichon F (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278:41141–41147. https://doi.org/10.1074/jbc.M210241200

    Article  CAS  PubMed  Google Scholar 

  10. Inestrosa NC, Sagal JP, Colombres M (2005) Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem 38:299–317. https://doi.org/10.3389/fncel.2019.00309

    Article  CAS  PubMed  Google Scholar 

  11. Reid GA, Darvesh S (2015) Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience 298:424–435. https://doi.org/10.1016/j.neuroscience.2015.04.039

    Article  CAS  PubMed  Google Scholar 

  12. Sameem B, Saeedi M, Mahdavi M, Shafiee A (2017) A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur J Med Chem 128:332–345. https://doi.org/10.1016/j.ejmech.2016.10.060

    Article  CAS  PubMed  Google Scholar 

  13. Igartúa DE, Martinez CS, Alonso SD, Prieto MJ (2020) Combined therapy for alzheimer’s disease: tacrine and PAMAM dendrimers co-administration reduces the side effects of the drug without modifying its activity. AAPS PharmSciTech 21:1–4. https://doi.org/10.1208/s12249-020-01652-w

    Article  CAS  Google Scholar 

  14. Marco JL, de los Rı́os C, Carreiras MC, Baños JE, Badı́a A, Vivas NM (2001) Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of new tacrine-like analogues. Bioorg Med Chem 9:727–732. https://doi.org/10.1016/s0968-0896(00)00284-4

  15. Bartolini M, Marco-Contelles J (2019) Tacrines as therapeutic agents for Alzheimer’s disease. IV. The tacripyrines and related annulated tacrines. Chem Rec 19:927–937. https://doi.org/10.1002/tcr.201800155

    Article  CAS  PubMed  Google Scholar 

  16. de Los RC, Marco-Contelles J (2019) Tacrines for Alzheimer’s disease therapy. III. The PyridoTacrines. Eur J Med Chem 166:381–389. https://doi.org/10.1016/j.ejmech.2019.02.005

    Article  CAS  Google Scholar 

  17. Gyul’budagyan LV, Durgaryan VG (1973) 2,4-dihydroxyquinoline derivatives. Chem Heterocycl Compd 9:769–771. https://doi.org/10.1007/BF00472329

    Article  Google Scholar 

  18. Najafi Z, Mahdavi M, Saeedi M, Karimpour-Razkenari E, Asatouri R, Vafadarnejad F, Moghadam FH, Khanavi M, Sharifzadeh M, Akbarzadeh T (2017) Novel tacrine-1, 2, 3-triazole hybrids: in vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 125:1200–1212. https://doi.org/10.1016/j.ejmech.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  19. Najafi Z, Mahdavi M, Saeedi M, Karimpour-Razkenari E, Edraki N, Sharifzadeh M, Khanavi M, Akbarzadeh T (2019) Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorg Chem 83:303–316. https://doi.org/10.1016/j.bioorg.2018.10.056

    Article  CAS  PubMed  Google Scholar 

  20. Lei M, Ma L, Hu L (2011) A green, efficient, and rapid procedure for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano [3,2-c] quinolin-5-one derivatives catalyzed by ammonium acetate. Tetrahedron Lett 52:2597–2600. https://doi.org/10.1016/j.tetlet.2011.03.061

    Article  CAS  Google Scholar 

  21. Elinson MN, Ryzhkov FV, Nasybullin RF, Vereshchagin AN, Egorov MP (2016) Fast efficient and general PASE approach to medicinally relevant 4H,5H-Pyrano-[4,3-b] pyran-5-one and 4,6-Dihydro-5H-pyrano-[3,2-c] pyridine-5-one scaffolds. Helv Chim Acta 99:724–731. https://doi.org/10.1002/hlca.201600150

    Article  CAS  Google Scholar 

  22. Chioua M, Buzzi E, Moraleda I, Iriepa I, Maj M, Wnorowski A, Giovannini C, Tramarin A, Portali F, Ismaili L, López-Alvarado P, Bolognesi ML, Jóźwiak K, Menéndez JC, Marco-Contelles J, Bartolini M (2018) Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease. Eur J Med Chem 155:839–846. https://doi.org/10.1016/j.ejmech.2018.06.044

    Article  CAS  PubMed  Google Scholar 

  23. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  24. Najafi Z, Mahdavi M, Saeedi M, Karimpour-Razkenari E, Asatouri R, Vafadarnejad F, Moghadam FH, Khanavi M, Sharifzadeh M, Akbarzadeh T (2017) Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo, biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 125:1200–1212. https://doi.org/10.1016/j.ejmech.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  25. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eurtivong C, Choowongkomon K, Ploypradith P, Ruchirawat S (2019) Molecular docking study of lamellarin analogues and identification of potential inhibitors of HIV-1 integrase strand transfer complex by virtual screening. Heliyon 5:e02811. https://doi.org/10.1016/j.heliyon.2019.e02811

    Article  PubMed  PubMed Central  Google Scholar 

  27. Asgari MS, Azizian H, Nazari Montazer M, Mohammadi-Khanaposhtani M, Asadi M, Sepehri S, Ranjbar PR, Rahimi R, Biglar M, Larijani B, Amanlou M, Mahdavi M (2020) New 1,2,3-triazole–(thio)barbituric acid hybrids as urease inhibitors: Design, synthesis, in vitro urease inhibition, docking study, and molecular dynamic simulation. Arch Pharm 353:2000023. https://doi.org/10.1002/ardp.202000023

    Article  CAS  Google Scholar 

  28. Wadapurkar RM, Shilpa MD, Katti AKS, Sulochana MB (2018) In silico drug design for Staphylococcus aureus and development of host-pathogen interaction network. IMU 10:58–70. https://doi.org/10.1016/j.imu.2017.11.002

    Article  Google Scholar 

  29. Hariri R, Afshar Z, Mahdavi M, Safavi M, Saeedi M, Najafi Z, Sabourian R, Karimpour-Razkenari E, Edraki N, Moghadam FH, Shafiee A, Khanavi M, Akbarzadeh T (2016) Novel tacrine-based Pyrano[3’,4’:5,6] pyrano[2,3-b]quinolinones: synthesis and cholinesterase inhibitory activity. Arch Pharm 349:915–924. https://doi.org/10.1002/ardp.201600123

    Article  CAS  Google Scholar 

  30. Yang H, Sun L, Wang Z, Li W, Liu G, Tang Y (2018) Admetopt: a web server for admet optimization in drug design via scaffold hopping. Journal of chemical information and modeling. J Chem Inf Model 58:2051–2056. https://doi.org/10.1021/acs.jcim.8b00532

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Council of Hamadan University of Medical Sciences with project No. 9709065238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Najafi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadafi Kohnehshahri, M., Chehardoli, G., Bahiraei, M. et al. Novel tacrine-based acetylcholinesterase inhibitors as potential agents for the treatment of Alzheimer’s disease: Quinolotacrine hybrids. Mol Divers 26, 489–503 (2022). https://doi.org/10.1007/s11030-021-10307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10307-2

Keywords

Navigation