Skip to main content

Progress on the natural asphalt applications as a new class of carbonious heterogeneous support; synthesis of Na[Pd-NAS] and study of its catalytic activity in the formation of carbon–carbon bonds

Abstract

In continuation of our recent research on introducing natural asphalt as a new carbonious, eco-friendly, highly economical support, and also in addition to our plan to develop its application in heterogeneous catalyst chemistry, palladium grafted on natural asphalt sulfonate (Na [Pd-NAS]), was prepared and characterized using usual spectroscopy techniques. This new carbon-based heterogeneous nanocatalyst was successfully applied as an efficient catalyst for the Suzuki, Stille and Heck reactions under mild and sustainable conditions. The reaction of various aryl halides with triphenyltin chloride, phenylboronic acid or n-butyl acrylate provided the corresponding products with moderate to good yields. Na [Pd-NAS] was characterized by FT-IR spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, inductively coupled plasma, thermogravimetric analysis techniques and N2 adsorption–desorption measurement. SEM image illustrated that the Na [Pd-NAS] has vermicular and flaky shapes. According to the IUPAC classiication, the sample exhibited IV type curves. More importantly, this ligand-free catalyst is stable under the reaction conditions. Besides, the catalyst was separated by simple filtration and reused for the several times without any deterioration in its activity.

Graphic abstract

In this research we report Na[Pd-NAS] as a versatile and reusable nanocatalyst for the C–C coupling reactions.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Shiri P, Amani AM, Aboonajmi J (2021) Supported Cu (II)-Schiff base: novel heterogeneous catalyst with extremely high activity for eco-friendly, one-pot and multi-component C–S bond-forming reaction toward a wide range of thioethers as biologically active cores. Mol Divers. https://doi.org/10.1007/s11030-021-10227-1

    Article  PubMed  Google Scholar 

  2. 2.

    Soleiman-Beigi M, Ghalavand S, Venovel HG, Kohzadi H (2021) Synthesis of lithium/cesium-NAS from zagrosian natural asphalt and study of their activity as novel, green, heterogeneous and homogeneous nanocatalysts in the Claisen-Schmidt and Knoevenagel condensations. J Iran Chem Soc. https://doi.org/10.1007/s13738-021-02270-4

    Article  Google Scholar 

  3. 3.

    Kim S, Seohyeon J, Kyung KM, Shin DS (2021) Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media. Nano Res 14:486–492. https://doi.org/10.1007/s12274-020-2885-7

    CAS  Article  Google Scholar 

  4. 4.

    Zhang J, Li Y, Han M, Xia Q, Chen Q, Chen M (2021) Constructing ultra-thin Ni-MOF@ NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state Asymmetric supercapacitor. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2020.111186

    Article  Google Scholar 

  5. 5.

    Wang Y, Liao J, Xie Z, Zhang K, Wu Y, Zuo P, Zhang W, Li J, Gao Z (2020) Zeolite-enhanced sustainable pd-catalyzed c–c cross-coupling reaction: controlled release and capture of palladium. ACS Appl Mater Interfaces 12:11419–11427. https://doi.org/10.1021/acsami.9b8110

    Article  PubMed  Google Scholar 

  6. 6.

    Dehghani M, Tadjarodi A, Chamani S (2019) Synthesis and characterization of magnetic zeolite y–palladium–nickel ferrite by ultrasonic irradiation and investigating its catalytic activity in suzuki–miyaura cross-coupling reactions. ACS Omega 6:10640–10648. https://doi.org/10.1021/acsomega.9b00666

    CAS  Article  Google Scholar 

  7. 7.

    Díaz-Sánchez M, Díaz-García D, Prashar S, Gómez-Ruiz S (2019) Palladium nanoparticles supported on silica, alumina or titania: greener alternatives for Suzuki–Miyaura and other C–C coupling reactions. Environ Chem Lett 17:1585–1602. https://doi.org/10.1007/s10311-019-00899-5

    CAS  Article  Google Scholar 

  8. 8.

    Landarani-Isfahani A, Mohammadpoor-Baltork I, Mirkhani V, Moghadam M, Tangestaninejad S, Rudbari HA (2020) Palladium nanoparticles immobilized on a nano-silica triazine dendritic polymer: a recyclable and sustainable nanoreactor for C–S cross-coupling. RSC Adv 10:21198–21205. https://doi.org/10.1039/D0RA00719F

    CAS  Article  Google Scholar 

  9. 9.

    Akbarzadeh P, Koukabi N, Kolvari E (2020) Polythiophene-functionalized magnetic carbon nanotube-supported copper (I) complex: a novel and retrievable heterogeneous catalyst for the “Phosphine-and Palladium-Free” Suzuki–Miyaura cross-coupling reaction. Mol Divers 24:1125–1137. https://doi.org/10.1007/s11030-019-10016-x

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wang S, Wu T, Lin J, Ji Y, Yan S, Pei Y, Xie S, Zong B, Qiao M (2020) Iron–potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins. ACS Catal 10:6389–6401. https://doi.org/10.1021/acscatal.0c00810

    CAS  Article  Google Scholar 

  11. 11.

    Teng DG, Wei XY, Li JH, Gao HS, Zhang M, Zong ZM (2020) One-pot Facile synthesis of multifunctional conjugated microporous polymers via Suzuki–Miyaura Coupling Reaction. ChemistrySelect 5:1410–1415. https://doi.org/10.1002/slct.201904303

    CAS  Article  Google Scholar 

  12. 12.

    Kim S, Kim B, Dogan NA, Yavuz CT (2019) Sustainable porous polymer catalyst for size-selective cross-coupling reactions. ACS Sustain Chem Eng 7:10865–10872. https://doi.org/10.1021/acssuschemeng.9b01729

    CAS  Article  Google Scholar 

  13. 13.

    Xu Y, Sprick RS, Brownbill NJ, Blanc F, Li Q, Ward JW et al (2021) Bottom-up wet-chemical synthesis of a two-dimensional porous carbon material with high supercapacitance using a cascade coupling/cyclization route. J Mater Chem A 9:3303–3308. https://doi.org/10.1039/D0TA11649A

    CAS  Article  Google Scholar 

  14. 14.

    Xiang Z, Xiong J, Deng B, Cui E, Yu L, Zeng Q, Pei K, Che R, Lu W (2020) Rational design of 2D hierarchically laminated Fe 3 O 4@ nanoporous carbon@ rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J Mater Chem C 8:2123–2134. https://doi.org/10.1039/C9TC06526A

    CAS  Article  Google Scholar 

  15. 15.

    Veerabagu U, Chen Z, Xiang J, Chen Z, Liu M, Xia H, Lu F, Environ J (2021) Novel cigarette butts-derived porous carbon-based catalyst for highly efficient Suzuki-Miyaura cross-coupling reaction. J Environ Chem Eng 9:105246. https://doi.org/10.1016/j.jece.2021.105246

    CAS  Article  Google Scholar 

  16. 16.

    Sherwood J, Clark JH, Fairlamb IJ, Slattery JM (2019) Solvent effects in palladium catalysed cross-coupling reactions. Green Chem 21:2164–2213. https://doi.org/10.1039/C9GC00617F

    CAS  Article  Google Scholar 

  17. 17.

    Xu MY, Jiang WT, Li Y, Xu QH, Zhou QL, Yang S, Xiao B (2019) Alkyl carbagermatranes enable practical palladium-catalyzed sp2–sp3 cross-coupling. J Am Chem Soc 141:7582–7588. https://doi.org/10.1021/jacs.9b02776

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Yousaf M, Zahoor AF, Akhtar R, Ahmad M, Naheed S (2019) Development of green methodologies for Heck, Chan–Lam, Stille and Suzuki cross-coupling reactions. Mol Divers 24:821–839. https://doi.org/10.1007/s11030-019-09988-7

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Peng JB, Wu FP, Li D, Geng HQ, Qi X, Ying J, Wu XF (2019) Palladium-catalyzed regioselective carbonylative coupling/amination of aryl iodides with unactivated alkenes: efficient synthesis of β-aminoketones. ACS Catal 9:2977–2983. https://doi.org/10.1021/acscatal.9b00774

    CAS  Article  Google Scholar 

  20. 20.

    Ghosh T (2019) Reductive Heck reaction: an emerging alternative in natural product synthesis. ChemistrySelect 4:4747–4755. https://doi.org/10.1002/slct.201804029

    CAS  Article  Google Scholar 

  21. 21.

    Taheri Kal Koshvandi A, Heravi MM, Momeni T (2018) Current applications of Suzuki–Miyaura coupling reaction in the total synthesis of natural products: an update. Appl Organomet Chem. https://doi.org/10.1002/aoc.4210

    Article  Google Scholar 

  22. 22.

    Piontek A, Bisz E, Szostak M (2018) Iron-catalyzed cross-couplings in the synthesis of pharmaceuticals. Pursuit Sustain Angew Chem 57:11116–11128. https://doi.org/10.1002/anie.201800364

    CAS  Article  Google Scholar 

  23. 23.

    Devendar P, Qu RY, Kang WM, He B, Yang GF (2018) Palladium-catalyzed cross-coupling reactions: a powerful tool for the synthesis of agrochemicals. J Agric Food Chem 66:8914–8934. https://doi.org/10.1021/acs.jafc.8b03792

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Huang Y, Song F, Wang Z, Xi P, Wu N, Wang Z, Lan J, You J (2012) Dehydrogenative Heck coupling of biologically relevant N-heteroarenes with alkenes: discovery of fluorescent core frameworks. Chem Comm 48:2864–2866. https://doi.org/10.1039/C2CC17557F

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Crusco A, Whiteland H, Baptista R, Forde-Thomas JE, Beckmann M, Mur LA, Nash RJ, Westwell AD, Hoffmann KF (2019) Antischistosomal properties of sclareol and its heck-coupled derivatives: design, synthesis, biological evaluation, and untargeted metabolomics. ACS Infect 5:1188–1199. https://doi.org/10.1021/acsinfecdis.9b00034

    CAS  Article  Google Scholar 

  26. 26.

    Nciri N, Song S, Kim N, Cho N (2018) Chemical characterization of gilsonite bitumen. J Pet Environ Biotechnol 5:1000193. https://doi.org/10.4172/2157-7463.1000193

    CAS  Article  Google Scholar 

  27. 27.

    Kohzadi H, Soleiman-Beigi M (2020) A recyclable heterogeneous nanocatalyst of copper-grafted natural asphalt sulfonate (NAS@ Cu): characterization, synthesis and application in the Suzuki–Miyaura coupling reaction. New J Chem 44:12134–12142. https://doi.org/10.1039/D0NJ01883J

    CAS  Article  Google Scholar 

  28. 28.

    Falah S, Soleiman-Beigi M, Kohzadi H (2020) Potassium natural asphalt sulfonate (K-NAS): synthesis and characterization as a new recyclable solid basic nanocatalyst and its application in the formation of carbon–carbon bonds. Appl Organomet Chem. https://doi.org/10.1002/aoc.5840

    Article  Google Scholar 

  29. 29.

    Kohzadi H, Soleiman-Beigi M (2021) Copper-grafted Zagrousian natural asphalt sulfonate (Cu-NAS): as a novel heterogeneous carbonious nanocatalyst for the synthesis of anilines and phenols. React Kinet Mech Catal 132:261–277. https://doi.org/10.1007/s11144-020-01918-1

    CAS  Article  Google Scholar 

  30. 30.

    Tahmasbi B, Ghorbani-Choghamarani A (2017) Pd (0)-Arg-boehmite: as reusable and efficient nanocatalyst in Suzuki and Heck reactions. Catal Lett 147:649–662. https://doi.org/10.1007/s10562-016-1927-y

    CAS  Article  Google Scholar 

  31. 31.

    Sasaki H, Sakamoto K, Mori M, Sakamoto T (2020) Synthesis of Ce1− xPdxO2− δ solid solution in molten nitrate. Catalysts 10:640. https://doi.org/10.3390/catal10060640

    CAS  Article  Google Scholar 

  32. 32.

    Naeimi H, Kiani F (2019) Inorganic–organic hybrid nano magnetic based nickel complex as a novel, efficient and reusable nanocomposite for the synthesis of biphenyl compounds in green condition. Polyhedron 160:163–169. https://doi.org/10.1016/j.poly.2018.11.070

    CAS  Article  Google Scholar 

  33. 33.

    Zhang Q, Su H, Luo J, Wei Y (2012) A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem 14:201–208. https://doi.org/10.1039/C1GC16031A

    CAS  Article  Google Scholar 

  34. 34.

    Goodman IA, Wise PH (1950) Dicyclic hydrocarbons. I. 2-aklylbiphenyls. J Am Chem Soc 72:3076–3079. https://doi.org/10.1021/ja01163a075

    CAS  Article  Google Scholar 

  35. 35.

    Ghorbani-Choghamarani A, Tahmasbi B, Noori N, Faryadi S (2017) Pd–S-methylisothiourea supported on magnetic nanoparticles as an efficient and reusable nanocatalyst for Heck and Suzuki reactions. C R Chim 20:132–139. https://doi.org/10.1016/j.crci.2016.06.010

    CAS  Article  Google Scholar 

  36. 36.

    Aksın O, Turkmen H, Artok L, Cetinkaya B, Ni C, Buyukgungor O, Ozka E (2006) Effect of immobilization on catalytic characteristics of saturated Pd-N-heterocyclic carbenes in Mizoroki–Heck reactions. J Organomet Chem 691:3027–3036. https://doi.org/10.1016/j.jorganchem.2006.03.012

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the authorities of Iranian National Science Foundation (INSF, Grant No. 97017223), and Ilam University for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soleiman-Beigi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 760 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohzadi, H., Soleiman-Beigi, M. Progress on the natural asphalt applications as a new class of carbonious heterogeneous support; synthesis of Na[Pd-NAS] and study of its catalytic activity in the formation of carbon–carbon bonds. Mol Divers (2021). https://doi.org/10.1007/s11030-021-10306-3

Download citation

Keywords

  • Coupling reactions
  • Heterogeneous nanocatalyst
  • Natural asphalt sulfonate
  • Palladium