Skip to main content

Advertisement

Log in

Exploration of chalcones and related heterocycle compounds as ligands of adenosine receptors: therapeutics development

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

A Correction to this article was published on 04 October 2021

This article has been updated

Abstract

Adenosine receptors (ARs) are ubiquitously distributed throughout the mammalian body where they are involved in an extensive list of physiological and pathological processes that scientists have only begun to decipher. Resultantly, AR agonists and antagonists have been the focus of multiple drug design and development programmes within the past few decades. Considered to be a privileged scaffold in medicinal chemistry, the chalcone framework has attracted a substantial amount of interest in this regard. Due to the potential liabilities associated with its structure, however, it has become necessary to explore other potentially promising compounds, such as heterocycles, which have successfully been obtained from chalcone precursors in the past. This review aims to summarise the emerging therapeutic importance of adenosine receptors and their ligands, especially in the central nervous system (CNS), while highlighting chalcone and heterocyclic derivatives as promising AR ligand lead compounds.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Scheme 3
Fig. 12
Fig. 13
Scheme 4
Fig. 14
Fig. 15
Fig. 16
Scheme 5
Fig. 17
Scheme 6
Fig. 18
Scheme 7
Scheme 8
Fig. 19
Scheme 9

Similar content being viewed by others

Change history

References

  1. Feigin VL, Vos T, Abajobir AA et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16(11):877–897. https://doi.org/10.1016/S1474-4422(17)30299-5

    Article  Google Scholar 

  2. Standaert DG, Roberson ED (2011) Treatment of central nervous system degenerative disorders. In: Brunton LL (ed) Goodman & Gilman’s: the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 609–628

    Google Scholar 

  3. Fredholm BB (2014) Adenosine—a physiological or pathophysiological agent? J Mol Med 92(3):201–206. https://doi.org/10.1007/s00109-013-1101-6

    Article  CAS  PubMed  Google Scholar 

  4. Yuzlenko O, Kiec-Kononowicz K (2006) Potent adenosine A1 and A2A receptors antagonists: recent developments. Curr Med Chem 13(30):3609–3625. https://doi.org/10.2174/092986706779026093

    Article  CAS  PubMed  Google Scholar 

  5. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117(12):7762–7810. https://doi.org/10.1021/acs.chemrev.7b00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dahlin JL, Baell J, Walters MA (2015) Assay interference by chemical reactivity. Assay Guidance Manual [internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD)

  7. Burnstock G (1978) A basis for distinguishing two types of purinergic receptors. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118

    Google Scholar 

  8. Fredholm BB, Ijzerman AP, Jacobson KA, Klotz K, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  9. Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448

    Article  CAS  PubMed  Google Scholar 

  10. Chen JF, Lee CF, Chern Y (2014) Adenosine receptor neurobiology: overview. Int Rev Neurobiol 119:1–49. https://doi.org/10.1016/B978-0-12-801022-8.00001-5

    Article  PubMed  Google Scholar 

  11. Fredholm BB (2010) Adenosine receptors as drug targets. Exp Cell Res 316(8):1284–1288. https://doi.org/10.1016/j.yexcr.2010.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63(1):1–34. https://doi.org/10.1124/pr.110.003285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev 12:265–286. https://doi.org/10.1038/nrd3955

    Article  CAS  Google Scholar 

  14. Jacobson KA, Gao Z (2006) Adenosine receptors as therapeutic targets. Nat Rev 5:247–264. https://doi.org/10.1038/nrd1983

    Article  CAS  Google Scholar 

  15. Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25(3):197–207

    Article  CAS  PubMed  Google Scholar 

  16. Müller CM, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochem Biophys Acta 1808:1290–1308. https://doi.org/10.1016/j.bbamem.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  17. Zoghbi GJ, Iskandrian AE (2012) Selective adenosine agonists and myocardial perfusion imaging. J Nucl Cardiol 19(1):126–141. https://doi.org/10.1007/s12350-011-9474-9

    Article  PubMed  Google Scholar 

  18. Al-Attraqchi OHA, Attimarad M, Venugopala KN, Nair A, Al-Attraqchi NHA (2019) Adenosine A2A receptor as a potential drug target—current status and future perspectives. Curr Pharm Des 25(25):2716–2740. https://doi.org/10.2174/1381612825666190716113444

    Article  CAS  PubMed  Google Scholar 

  19. Ghimire G, Hage FG, Heo J, Iskandrian AE (2013) Regadenoson: a focused update. J Nucl Cardiol 20(2):284–288. https://doi.org/10.1007/s12350-012-9661-3

    Article  PubMed  Google Scholar 

  20. Johnson SG, Peters S (2010) Advances in pharmacologic stress agents: focus on regadenoson. J Nucl Med Technol 38(3):163–171. https://doi.org/10.2967/jnmt.109.065581

    Article  PubMed  Google Scholar 

  21. Guerrero A (2018) A2A adenosine receptor agonists and their potential therapeutic applications. An update. Curr Med Chem 25(30):3597–3612. https://doi.org/10.2174/0929867325666180313110254

    Article  CAS  PubMed  Google Scholar 

  22. Ben DD, Lambertucci C, Buccioni M et al (2019) Non-nucleoside agonists of the adenosine receptors: an overview. Pharmaceuticals 12(150):1–21. https://doi.org/10.3390/ph12040150

    Article  CAS  Google Scholar 

  23. Skouroliakou M, Bacopoulou F, Markantonis SL (2009) Caffeine versus theophylline for apnea of prematurity: a randomised controlled trial. J Paediatr Child Health 45(10):587–592. https://doi.org/10.1111/j.1440-1754.2009.01570.x

    Article  PubMed  Google Scholar 

  24. Makino S (1996) Theophylline in the treatment of asthma. Clin Exp Allergy 26:47–54

    Article  CAS  PubMed  Google Scholar 

  25. Müller CE, Jacobson KA (2011) Xanthines as adenosine receptor antagonists. Handb Exp Pharmacol 200:151–199. https://doi.org/10.1007/978-3-642-13443-2_6

    Article  CAS  Google Scholar 

  26. FDA (U.S. Food and Drug Administration) (2019) FDA approves new add-on drug to treat off episodes in adults with Parkinson’s disease. https://www.fda.gov/news-events/press-announcements/fda-approves-new-add-drug-treat-episodes-adults-parkinsons-disease. Accessed 24 Jan 2021

  27. Klotz KN (2000) Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol 362:382–391

    Article  CAS  PubMed  Google Scholar 

  28. Gao ZG, Tosh DK, Jain S, Yu J, Suresh RR, Jacobson KA (2018) A1 adenosine receptor agonists, antagonists, and allosteric modulators. In: Borea PA, Varani K, Gessi S, Merighi S, Vincenzi F (eds) The adenosine receptors, vol 34. The receptors. Springer, Switzerland, pp 59–89. https://doi.org/10.1007/978-3-319-90808-3_4

  29. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):364–374. https://doi.org/10.1007/s002100000313

    Article  CAS  PubMed  Google Scholar 

  30. Reppert SM, Weaver DR, Stehle JH, Rivkees SA (1991) Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 5(8):1037–1048

    Article  CAS  PubMed  Google Scholar 

  31. Paul S, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A (2011) Adenosine A1 receptors in the central nervous system: their functions in health and disease, and possible elucidation by PET imaging. Curr Med Chem 18(31):4820–4835. https://doi.org/10.2174/092986711797535335

    Article  CAS  PubMed  Google Scholar 

  32. Munshi R, Pang I, Sternweis PC, Linden J (1991) A1 adenosine receptors of bovine brain couple to guanine nucleotide-binding proteins Gi1, Gi2 and Go. J Biol Chem 266(33):22285–22289

    Article  CAS  PubMed  Google Scholar 

  33. Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal 1:111–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soliman AM, Fathalla AM, Moustafa AA (2018) Adenosine role in brain functions: pathophysiological influence on Parkinson’s disease and other brain disorders. Pharmacol Rep 70(4):661–667. https://doi.org/10.1016/j.pharep.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  35. Sachdeva S, Gupta M (2013) Adenosine and its receptors as therapeutic targets: an overview. Saudi Pharm J 21(3):245–253. https://doi.org/10.1016/j.jsps.2012.05.011

    Article  PubMed  Google Scholar 

  36. Rabadi MM, Lee HT (2015) Adenosine receptors and renal ischaemia reperfusion injury. Acta Physiol 213:222–231. https://doi.org/10.1111/apha.12402

    Article  CAS  Google Scholar 

  37. Shah B, Rohatagi S, Natarajan C, Kirkesseli S, Baybutt R, Jensen BK (2004) Pharmacokinetics, pharmacodynamics, and safety of a lipid-lowering adenosine A1 agonist, RPR749, in healthy subjects. Am J Ther 11:175–189

    Article  PubMed  Google Scholar 

  38. Gao ZG, Jacobson KA (2017) Purinergic signaling in mast cell degranulation and asthma. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00947

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gottlieb SS (2008) Adenosine A1 antagonists and the cardiorenal syndrome. Curr Heart Fail Rep 5:105–109

    Article  CAS  PubMed  Google Scholar 

  40. Elmenhorst D, Basheer R, McCarley RW, Bauer A (2009) Sleep deprivation increases A1 adenosine receptor density in the rat brain. Brain Res 1258:53–58. https://doi.org/10.1016/j.brainres.2008.12.056

    Article  CAS  PubMed  Google Scholar 

  41. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  42. Huang ZL, Urade Y, Hayaishi O (2011) The role of adenosine in the regulation of sleep. Curr Top Med Chem 11(8):1047–1057

    Article  CAS  PubMed  Google Scholar 

  43. Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochem Biophys Acta 1808(5):1380–1399. https://doi.org/10.1016/j.bbamem.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  44. Wei CJ, Li W, Chen JF (2011) Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochem Biophys Acta 1808(5):1358–1379. https://doi.org/10.1016/j.bbamem.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  45. Haskó G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26(10):511–516. https://doi.org/10.1016/j.tips.2005.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boison D (2005) Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist 11(1):25–36. https://doi.org/10.1177/1073858404269112

    Article  CAS  PubMed  Google Scholar 

  47. Weltha L, Reemmer J, Boison D (2019) The role of adenosine in epilepsy. Brain Res Bull 151:46–54. https://doi.org/10.1016/j.brainresbull.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  48. Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D (2006) Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 200:184–190. https://doi.org/10.1016/j.expneurol.2006.02.133

    Article  CAS  PubMed  Google Scholar 

  49. Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience 338:1–18. https://doi.org/10.1016/j.neuroscience.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  50. Vincenzi F, Targa M, Romagnoli R et al (2014) TRR469, a potent A1 adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology 81:6–14. https://doi.org/10.1016/j.neuropharm.2014.01.028

    Article  CAS  PubMed  Google Scholar 

  51. Normile HJ, Barraco RA (1991) N6-cyclopentyladenosine impairs passive avoidance retention by selective action at A1 receptors. Brain Res Bull 27:101–104

    Article  CAS  PubMed  Google Scholar 

  52. Pereira GS, e Souza TM, Vinadé ERC et al (2002) Blockade of adenosine A1 receptors in the posterior cingulate cortex facilitates memory in rats. Eur J Pharmacol 437:151–154

    Article  CAS  PubMed  Google Scholar 

  53. Prediger RDS, Takahashi RN (2005) Modulation of short-term social memory in rats by adenosine A1 and A2A receptors. Neurosci Lett 376:160–165. https://doi.org/10.1016/j.neulet.2004.11.049

    Article  CAS  PubMed  Google Scholar 

  54. Giménez-Llort L, Masino S, Diao L et al (2005) Mice lacking the adenosine A1 receptor have normal spatial learning and plasticity in the CA1 region of the hippocampus, but they habituate more slowly. Synapse 57:8–16. https://doi.org/10.1002/syn.20146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Von Lubitz DKJE, Paul IA, Bartus RT, Jacobson KA (1993) Effects of chronic administration of adenosine A1 receptor agonist and antagonist on spatial learning and memory. Eur J Pharmacol 249:271–280

    Article  Google Scholar 

  56. Zarrindast MR, Shafaghi B (1994) Effects of adenosine receptor agonists and antagonists on acquisition of passive avoidance learning. Eur J Pharmacol 256:233–239

    Article  CAS  PubMed  Google Scholar 

  57. Svenningsson P, Hall H, Sedvall G, Fredholm BB (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335

    Article  CAS  PubMed  Google Scholar 

  58. Antoniou K, Papadopoulou-Daifoti Z, Hyphantis T et al (2005) A detailed behavioral analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology 183:154–162. https://doi.org/10.1007/s00213-005-0173-6

    Article  CAS  PubMed  Google Scholar 

  59. Popoli P, Reggio R, Pezzola A, Fuxe K, Ferré S (1998) Adenosine A1 and A2A receptor antagonists stimulate motor activity evidence for an increased effectiveness in aged rats. Neurosci Lett 251:201–204

    Article  CAS  PubMed  Google Scholar 

  60. Ferre S, Popoli P, Gimenez-Llort L et al (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. NeuroReport 6(1):73–76. https://doi.org/10.1097/00001756-199412300-00020

    Article  CAS  PubMed  Google Scholar 

  61. Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:143–144. https://doi.org/10.1016/S0301-0082(03)00087-X

    Article  CAS  Google Scholar 

  62. Gatch MB, Wallis CJ, Lal H (1999) The effects of adenosine ligands R-PIA and CPT on ethanol withdrawal. Alcohol 19(1):9–14

    Article  CAS  PubMed  Google Scholar 

  63. van Calker D, Biber K, Domschke K, Serchov T (2019) The role of adenosine receptors in mood and anxiety disorders. J Neurochem 151(1):11–27. https://doi.org/10.1111/jnc.14841

    Article  CAS  PubMed  Google Scholar 

  64. Sharma R, Engemann SC, Sahota P, Thakkar MM (2010) Effects of ethanol on extracellular levels of adenosine in the basal forebrain: an in vivo microdialysis study in freely behaving rats. Alcohol Clin Exp Res 34(5):813–818. https://doi.org/10.1111/j.1530-0277.2010.01153.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dar MS (2001) Modulation of ethanol-induced motor incoordination by mouse striatal A1 adenosinergic receptor. Brain Res Bull 55(4):513–520

    Article  CAS  PubMed  Google Scholar 

  66. Prediger RDS, Batista LC, Takahashi RN (2004) Adenosine A1 receptors modulate the anxiolytic-like effect of ethanol in the elevatzed plus-maze in mice. Eur J Pharmacol 499:147–154. https://doi.org/10.1016/j.ejphar.2004.07.106

    Article  CAS  PubMed  Google Scholar 

  67. Thakkar MM, Engemann SC, Sharma R, Sahota P (2010) Role of wake-promoting basal forebrain and adenosinergic mechanisms in sleep-promoting effects of ethanol. Alcohol Clin Exp Res 34(6):997–1005. https://doi.org/10.1111/j.1530-0277.2010.01174.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rebola N, Canas PM, Oliveira CR, Cunha RA (2005) Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132:893–903. https://doi.org/10.1016/j.neuroscience.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  69. van Waarde A, Dierckx RAJO, Zhou X et al (2018) Potential therapeutic applications of adenosine A2A receptor ligands and opportunities for A2A receptor imaging. Med Res Rev. https://doi.org/10.1002/med.21432

    Article  PubMed  PubMed Central  Google Scholar 

  70. de Lera RM, Lim YH, Zheng J (2014) Adenosine A2A receptor as a drug discovery target. J Med Chem 57(9):3623–3650. https://doi.org/10.1021/jm4011669

    Article  CAS  Google Scholar 

  71. Diniz C, Borges F, Santana L et al (2008) Ligands and therapeutic perspectives of adenosine A2A receptors. Curr Pharm Des 14(17):1698–1722

    Article  CAS  PubMed  Google Scholar 

  72. Minetti P, Tinti MO, Carminati P et al (2005) 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem 48(22):6887–6896. https://doi.org/10.1021/jm058018d

    Article  CAS  PubMed  Google Scholar 

  73. Gillespie RJ, Lerpiniere J, Dawson CE et al (2002) Purine derivatives as purinergic receptor antagonists. United States Patent WO 02/055521 A1, 18 Jul 2002

  74. Volpini R, Costanzi S, Lambertucci C et al (2005) 2- and 8-alkynyl-9-ethyladenines: synthesis and biological activity at human and rat adenosine receptors. Purinergic Signal 1:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haskó G, Pacher P (2008) A2A receptors in inflammation and injury: lessons learned from transgenic animals. J Leukoc Biol 83:447–455. https://doi.org/10.1189/jlb.0607359

    Article  CAS  PubMed  Google Scholar 

  76. Lappas CM, Sullivan GW, Linden J (2005) Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 14(7):797–806

    Article  CAS  PubMed  Google Scholar 

  77. Sullivan GW, Fang G, Linden J, Scheld WM (2004) A2A adenosine receptor activation improves survival in mounse models of endotoxemia and sepsis. J Infect Dis 189:1897–1904

    Article  CAS  PubMed  Google Scholar 

  78. Arai M, Thurman RG, Lemasters JJ (2000) Contribution of adenosine A2 receptors and cyclic adenosine monophosphate to protective ischemic preconditioning of sinusoidal endothelial cells against storage/reperfusion injury in rat livers. Hepatology 32(2):297–302. https://doi.org/10.1053/jhep.2000.8896

    Article  CAS  PubMed  Google Scholar 

  79. Cargnoni A, Claudio C, Antonella B et al (1999) Role of A2A receptor in the modulation of myocardial reperfusion damage. J Cardiovasc Pharmacol 33(6):883–893

    Article  CAS  PubMed  Google Scholar 

  80. Harada N, Okajima K, Murakami K et al (2000) Adenosine and selective A2A receptor agonists reduce ischemia/reperfusion injury of rat liver mainly by inhibiting leukocyte activation. J Pharmacol Exp Ther 294(3):1034–1042

    CAS  PubMed  Google Scholar 

  81. Ross SD, Tribble CG, Linden J et al (1999) Selective adenosine A2A activation reduces lung reperfusion injury following transplantation. J Heart Lung Transplant 18:994–1002

    Article  CAS  PubMed  Google Scholar 

  82. Montesinos MC, Desai-Merchant A, Cronstein BN (2015) Promotion of wound healing by an agonist of adenosine A2A receptor is dependent on tissue plasminogen activator. Inflammation 38(6):2036–2041. https://doi.org/10.1007/s10753-015-0184-3

    Article  CAS  PubMed  Google Scholar 

  83. Squadrito F, Bitto A, Altavilla D et al (2014) The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: results of a clinical trial. J Clin Endocrinol Metab 99(5):E746–E753. https://doi.org/10.1210/jc.2013-3569

    Article  CAS  PubMed  Google Scholar 

  84. Allard D, Turcotte M, Stagg J (2017) Targeting A2 adenosine receptors in cancer. Immunol Cell Biol 95:333–339. https://doi.org/10.1038/icb.2017.8

    Article  CAS  PubMed  Google Scholar 

  85. Tsai CJ, Liu CY, Lazarus M, Hayashi Y (2020) Sleep architecture of adenosine A2A receptor-deficient mice. Sleep Biol Rhythm 18:275–279. https://doi.org/10.1007/s41105-020-00260-2

    Article  Google Scholar 

  86. Fang T, Dong H, Xu XH et al (2017) Adenosine A2A receptor mediates hypnotic effects of ethanol in mice. Sci Rep 7:12678. https://doi.org/10.1038/s41598-017-12689-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang ZL, Qu WM, Eguchi N et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8(7):858–859. https://doi.org/10.1038/nn1491

    Article  CAS  PubMed  Google Scholar 

  88. Urade Y, Eguchi N, Qu WM et al (2003) Minireview: sleep regulation in adenosine A2A receptor-deficient mice. Neurology 61(11):S94–S96. https://doi.org/10.1212/01.WNL.0000095222.41066.5E

    Article  CAS  PubMed  Google Scholar 

  89. Chen JF, Pedata F (2008) Modulation of ischemic brain injury and neuroinflammation by adenosine A2A receptors. Curr Pharm Des 14(15):1490–1499

    Article  CAS  PubMed  Google Scholar 

  90. Xu K, Xu Y, Chen J, Schwarzschild MA (2002) Caffeine’s neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice. Neurosci Lett 322(1):13–16. https://doi.org/10.1016/S0304-3940(02)00069-1

    Article  CAS  PubMed  Google Scholar 

  91. Varano F, Catarzi D, Vincenzi F et al (2016) Design, synthesis, and pharmacological characterization of 2-(2-furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine derivatives: new highly potent A2A adenosine receptor inverse agonists with antinociceptive activity. J Med Chem 59:10564–10576. https://doi.org/10.1021/acs.jmedchem.6b01068

    Article  CAS  PubMed  Google Scholar 

  92. Derry CJ, Derry S, Moore RA (2014) Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009281.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ledent C, Vaugeois J, Schiffmann SN et al (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  CAS  PubMed  Google Scholar 

  94. Rosso A, Mossey J, Lippa CF (2008) Caffeine: neuroprotective functions in cognition and Alzheimer’s disease. Am J Alzheimers Dis Other Demen 23(5):417–422. https://doi.org/10.1177/1533317508320083

    Article  PubMed  Google Scholar 

  95. Maia L, de Mendona A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:377–382

    Article  CAS  PubMed  Google Scholar 

  96. Domenici MR, Ferrante A, Martire A et al (2019) Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol Res 147:104338. https://doi.org/10.1016/j.phrs.2019.104338

    Article  CAS  PubMed  Google Scholar 

  97. Faivre E, Coelho JE, Zornbach K et al (2018) Beneficial effect of a selective adenosine A2A receptor antagonist in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Front Mol Neurosci 11:1–13. https://doi.org/10.3389/fnmol.2018.00235

    Article  CAS  Google Scholar 

  98. Laurent C, Burnouf S, Ferry B et al (2016) A2A adenosine receptor deletion is protective in a mouse model of tauopathy. Mol Psychiatry 21(1):97–107. https://doi.org/10.1038/mp.2014.151

    Article  CAS  PubMed  Google Scholar 

  99. Kachroo A, Schwarzschild MA (2012) Adenosine A2A receptor gene disruption protects in an α-synuclein model of Parkinson’s disease. Ann Neurol 71(2):278–282. https://doi.org/10.1002/ana.22630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ferré S, Von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. PNAS 88:7238–7241

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF (2007) Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92(1–2):210–217. https://doi.org/10.1016/j.physbeh.2007.05.034

    Article  CAS  PubMed  Google Scholar 

  102. Shook BC, Jackson PF (2011) Adenosine A2A receptor antagonists and Parkinson’s disease. ACS Chem Neurosci 2(10):555–567. https://doi.org/10.1021/cn2000537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29(11):647–654. https://doi.org/10.1016/j.tins.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  104. Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacol Ther 105(3):267–310. https://doi.org/10.1016/j.pharmthera.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  105. Fahn S (2015) The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord 30(1):4–18. https://doi.org/10.1002/mds.26102

    Article  CAS  PubMed  Google Scholar 

  106. LeWitt PA, Guttman M, Tetrud JW et al (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 63(3):295–302. https://doi.org/10.1002/ana.21315

    Article  CAS  PubMed  Google Scholar 

  107. Popoli P, Reggio R, Pèzzola A (2000) Effects of SCH 58261, an adenosine A2A receptor antagonist, on quinpirole-induced turning in 6-hydroxydopamine-lesioned rats: lack of tolerance after chronic caffeine intake. Neuropsychopharmacology 22(5):522–529

    Article  CAS  PubMed  Google Scholar 

  108. El Yacoubi M, Ledent C, Parmentier M et al (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134(1):68–77. https://doi.org/10.1038/sj.bjp.0704240

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yamada K, Kobayashi M, Shiozaki S et al (2014) Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats. Psychopharmacology 231:2839–2849. https://doi.org/10.1007/s00213-014-3454-0

    Article  CAS  PubMed  Google Scholar 

  110. Yamada K, Kobayashi M, Mori A, Jenner P, Kanda T (2013) Antidepressant-like activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002), in the forced swim test and the tail suspension test in rodents. Pharmacol Biochem Behav 114–115:23–30. https://doi.org/10.1016/j.pbb.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  111. Boison D, Singer P, Shen HY, Feldon J, Yee BK (2012) Adenosine hypothesis of schizophrenia—opportunities for pharmacotherapy. Neuropharmacology 62:1527–1543. https://doi.org/10.1016/j.neuropharm.2011.01.048

    Article  CAS  PubMed  Google Scholar 

  112. Hirota T, Kishi T (2013) Adenosine hypothesis in schizophrenia and bipolar disorder: a systematic review and meta-analysis of randomized controlled trial of adjuvant purinergic modulators. Schizophr Res 149:88–95. https://doi.org/10.1016/j.schres.2013.06.038

    Article  PubMed  Google Scholar 

  113. Sun Y, Huang P (2016) Adenosine A2B receptor: from cell biology to human disease. Front Chem 4:1–11. https://doi.org/10.3389/fchem.2016.00037

    Article  CAS  Google Scholar 

  114. Baraldi PG, Preti D, Tabrizi MA et al (2007) Synthesis and biological evaluation of novel 1-deoxy-1-[6-[((hetero)arylcarbonyl)hydrazino]-9H-purin-9-yl]-N-ethyl-β-D-ribofuranuronamide derivatives as useful templates for the development of A2B adenosine receptor agonists. J Med Chem 50:374–380. https://doi.org/10.1021/jm061170a

    Article  CAS  PubMed  Google Scholar 

  115. Kim YC, Ji X, Melman N, Linden J, Jacobson KA (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A2B adenosine receptors. J Med Chem 43(6):1165–1172. https://doi.org/10.1021/jm990421v

    Article  CAS  PubMed  Google Scholar 

  116. Borrmann T, Hinz S, Bertarelli DCG et al (2009) 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52(13):3994–4006. https://doi.org/10.1021/jm900413e

    Article  CAS  PubMed  Google Scholar 

  117. Cheng F, Xu Z, Liu G, Tang Y (2010) Insights into binding modes of adenosine A2B antagonists with ligand-based and receptor-based methods. Eur J Med Chem 45:3459–3471. https://doi.org/10.1016/j.ejmech.2010.04.039

    Article  CAS  PubMed  Google Scholar 

  118. Eastwood P, Gonzalez J, Paredes S et al (2010) Discovery of N-(5,6-diarylpyridin-2-yl)amide derivatives as potent and selective A2B adenosine receptor antagonists. Bioorganic Med Chem Lett 20:1697–1700. https://doi.org/10.1016/j.bmcl.2010.01.045

    Article  CAS  Google Scholar 

  119. Feoktistov I, Ryzhov S, Zhong H et al (2004) Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44:649–654. https://doi.org/10.1161/01.HYP.0000144800.21037.a5

    Article  CAS  PubMed  Google Scholar 

  120. Takedachi M, Oohara H, Smith BJ et al (2012) CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 227(6):2622–2631. https://doi.org/10.1002/jcp.23001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K (2012) A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 287(19):15718–15727. https://doi.org/10.1074/jbc.M112.344994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Corciulo C, Wilder T, Cronstein BN (2016) Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signalling 12(3):537–547. https://doi.org/10.1007/s11302-016-9519-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Szentmiklosi AJ, Ujfalusi A, Cseppento A, Nosztray K, Kovács P, Szabó JZ (1995) Adenosine receptors mediate both contractile and relaxant effects of adenosine in main pulmonary artery of guinea pigs. Naunyn Schmiedebergs Arch Pharmacol 351:417–425

    Article  CAS  PubMed  Google Scholar 

  124. Koupenova M, Johnston-Cox H, Vezeridis A et al (2012) The A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 125(2):354–363. https://doi.org/10.1161/CIRCULATIONAHA.111.057596

    Article  CAS  PubMed  Google Scholar 

  125. Dai Y, Zhang W, Wen J, Zhang Y, Kellems RE, Xia Y (2011) A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J Am Soc Nephrol 22:890–901. https://doi.org/10.1681/ASN.2010080890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev 7:759–770. https://doi.org/10.1038/nrd2638

    Article  CAS  Google Scholar 

  127. Chandrasekaran B, Samarneh S, Jaber AMY, Kassab G, Agrawal N (2019) Therapeutic potentials of A2B adenosine receptor ligands: current status and perspectives. Curr Pharm Des 25:1–31

    Article  CAS  Google Scholar 

  128. Wei W, Du C, Lv J et al (2013) Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 190:138–146. https://doi.org/10.4049/jimmunol.1103721

    Article  CAS  PubMed  Google Scholar 

  129. Merighi S, Borea PA, Gessi S (2015) Adenosine receptors and diabetes: focus on the A2B adenosine receptor subtype. Pharmacol Res 99:229–236. https://doi.org/10.1016/j.phrs.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  130. Gessi S, Merighi S, Varani K, Leung E, Lennan SM, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140. https://doi.org/10.1016/j.pharmthera.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  131. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. PNAS 89:7432–7436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Klotz KN (2010) Pharmacology and molecular biology of A3 adenosine receptors. In: Borea PA (ed) A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, Dordrecht, pp 49–60. https://doi.org/10.1007/978-90-481-3144-0_3

    Chapter  Google Scholar 

  133. Baraldi PG, Romagnoli R, Saponaro G, Baraldi S, Tabrizi MA, Preti D (2010) A3 adenosine receptor antagonists: history and furute perspectives. In: Borea PA (ed) A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, Dordrecht, pp 121–148. https://doi.org/10.1007/978-90-481-3144-0_7

    Chapter  Google Scholar 

  134. Gao ZG, Jacobson KA (2004) Partial agonists for A3 adenosine receptors. Curr Top Med Chem 4(8):855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jacobson KA, Gao ZG, Tosh DK, Sanjayan GJ, de Castro S (2010) A3 adenosine receptor agonists: history and future perspectives. In: Borea PA (ed) A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, Dordrecht, pp 93–120. https://doi.org/10.1007/978-90-481-3144-0_6

    Chapter  Google Scholar 

  136. DeNinno MP, Masamune H, Chenard LK et al (2003) 3’-aminoadenosine-5’-uronamides: discovery of the first highly selective agonist at the human adenosine A3 receptor. J Med Chem 46(3):353–355. https://doi.org/10.1021/jm0255724

    Article  CAS  PubMed  Google Scholar 

  137. Canfite BioPharma Ltd (2021) Piclidenoson (CF101). http://www.canfite.com/?KPageId=19. Accessed 23 Jan 2021

  138. Canfite BioPharma Ltd (2021) Namodenoson (CF102). http://www.canfite.com/?KPageId=20. Accessed 23 Jan 2021

  139. Melman A, Gao ZG, Kumar D et al (2008) Design of (N)-methanocarba adenosine 5′-uronamides as species-independent A3 receptor-selective agonists. Bioorganic Med Chem Lett 18(9):2813–2819

    Article  CAS  Google Scholar 

  140. Tchilibon SJ, Joshi BV, Kim SK, Duong HT, Gao ZG, Jacobson KA (2005) (N)-methanocarba 2,N6-disubstituted adenine nucleosides as highly potent and selective A3 adenosine receptor agonists. J Med Chem 48(6):1745–1758. https://doi.org/10.1021/jm049580r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jeong LS, Jin DZ, Kim HO et al (2003) N6-substituted D-4’-thioadenosine-5’-methyluronamides: potent and selective agonists at the human A3 adenosine receptor. J Med Chem 46(18):3775–3777. https://doi.org/10.1021/jm034098e

    Article  CAS  PubMed  Google Scholar 

  142. Gao ZG, Kim SK, Biadatti T et al (2002) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45(20):4471–4484. https://doi.org/10.1021/jm020211+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pedata F, Pugliese AM, Sebastiao AM, Ribeiro JA (2010) Adenosine A3 receptor signalling in the central nervous system. In: Borea PA (ed) A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, Dordrecht, pp 165–188. https://doi.org/10.1007/978-90-481-3144-0_9

    Chapter  Google Scholar 

  144. Gao ZG, Blaustein JB, Gross AS, Melman N, Jacobson KA (2003) N6-substituted adenosine derivatives: selectivity, efficacy and species differences at A3 adenosine receptors. Biochem Pharmacol 65:1675–1684. https://doi.org/10.1016/S0006-2952(03)00153-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Madi L, Ochaion A, Rath-Wolfson L et al (2004) The A3 adenosine receptor is highly expressed in tumour versus normal cells: potential target for tumour growth inhibition. Clin Cancer Res 10:4472–4479

    Article  CAS  PubMed  Google Scholar 

  146. Stemmer SM, Benjaminov O, Medalia G et al (2013) CF102 for the treatment of hepatocellular carcinoma: a phase I/II, open-label, dose-escalation study. Oncologist 18:25–26. https://doi.org/10.1634/theoncologist.2012-0211

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fishman P, Bar-Yehuda S, Madi L, Cohn I (2002) A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs 13:437–443

    Article  CAS  PubMed  Google Scholar 

  148. Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268(23):16887–16890

    Article  CAS  PubMed  Google Scholar 

  149. Gessi S, Sacchetto V, Fogli E, Fozard J (2010) Adenosine A3 receptor regulation of cells of the immune system and modulation of inflammation. In: Borea PA (ed) A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, Dordrecht, pp 235–256. https://doi.org/10.1007/978-90-481-3144-0_12

    Chapter  Google Scholar 

  150. Stoilov RM, Licheva RN, Mihaylova MK et al (2014) Therapeutic effect of oral CF101 in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled phase II study. Immunome Res 11(1):1–6. https://doi.org/10.4172/17457580.1000087

    Article  Google Scholar 

  151. Brown RA, Spina D, Page CP (2008) Adenosine receptors and asthma. Br J Pharmacol 153:S446–S456. https://doi.org/10.1038/bjp.2008.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tracey WR, Magee WP, Oleynek JJ et al (2003) Novel N6-substituted adenosine 5’-N-methyluronamides with high selectivity for human adenosine A3 receptors reduce ischemic myocardial injury. AJP Heart Circ Physiol 285:H2780–H2787. https://doi.org/10.1152/ajpheart.00411.2003

    Article  CAS  Google Scholar 

  153. De Jonge R, Out M, Maas WJ, De Jong JW (2002) Preconditioning of rat hearts by adenosine A1 or A3 receptor activation. Eur J Pharmacol 441:165–172

    Article  PubMed  Google Scholar 

  154. Rivo J, Zeira E, Galun E, Matot I (2004) Activation of A3 adenosine receptor provides lung protection against ischemia-reperfusion injury associated with reduction in apoptosis. Am J Transplant 4:1941–1948. https://doi.org/10.1111/j.1600-6143.2004.00620.x

    Article  CAS  PubMed  Google Scholar 

  155. Lee HT, Ota-setlik A, Xu H, D’agati VD, Jacobson MA, Emala CW (2003) A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. AJP Renal Physiol 284:F267–F273. https://doi.org/10.1152/ajprenal.00271.2002

    Article  CAS  Google Scholar 

  156. Fedorova IM, Jacobson MA, Basile A, Jacobson KA (2003) Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration. Cell Mol Neurobiol 23(3):431–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jacobson KA, Nikodijevic O, Shi D et al (1993) A role for central A3-adenosine receptors: mediation of behavioural depressant effects. FEBS Lett 336(1):57–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rubaj A, Zgodzinski W, Sieklucka-Dziuba M (2003) The influence of adenosine A3 receptor agonist: IB-MECA, on scopolamine- and MK-801-induced memory impairment. Behav Brain Res 141:11–17

    Article  CAS  PubMed  Google Scholar 

  159. Björklund O, Shang M, Tonazzini I, Daré E, Fredholm BB (2008) Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596:6–13. https://doi.org/10.1016/j.ejphar.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  160. Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19(5):184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Von Lubitz DKJE, Lin RCS, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263(1–2):59–67

    Article  Google Scholar 

  162. Roseti C, Martinello K, Fucile S et al (2008) Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors. PNAS 105(39):15118–15123. https://doi.org/10.1073/pnas.0807277105

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chen Z, Janes K, Chen C, Doyle T et al (2012) Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J 26:1855–1865. https://doi.org/10.1096/fj.11-201541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhu CB, Steiner JA, Munn JL, Daws LC, Hewlett WA, Blakely RD (2007) Rapid stimulation of presynaptic serotonin transport by A3 adenosine receptors. J Pharmacol Exp Ther 322(1):332–340. https://doi.org/10.1124/jpet.107.121665

    Article  CAS  PubMed  Google Scholar 

  165. Merriam-Webster (2020) chalc-. https://www.merriam-webster.com/dictionary/chalc-. Accessed 8 Aug 2020

  166. Sahu NK, Balbhadra SS, Choudhary J, Kohli DV (2012) Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem 19:209–225

    Article  CAS  PubMed  Google Scholar 

  167. Rammohan A, Reddy JS, Sravya G, Rao CN, Zyryanov GV (2020) Chalcone synthesis, properties and medicinal applications: a review. Environ Chem Lett 18:433–458. https://doi.org/10.1007/s10311-019-00959-w

    Article  CAS  Google Scholar 

  168. Albuquerque HMT, Santos CMM, Cavaleiro JAS, Silva AMS (2014) Chalcones as versatile synthons for the synthesis of 5- and 6-membered nitrogen heterocycles. Curr Org Chem 18(21):2750–2775. https://doi.org/10.1002/chin.201515330

    Article  CAS  Google Scholar 

  169. Rani A, Anand A, Kumar K, Kumar V (2019) Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin Drug Discov 14(3):249–288. https://doi.org/10.1080/17460441.2019.1573812

    Article  CAS  PubMed  Google Scholar 

  170. Gaonkar SL, Vignesh UN (2017) Synthesis and pharmacological properties of chalcones: a review. Res Chem Intermed 43(11):6043–6077. https://doi.org/10.1007/s11164-017-2977-5

    Article  CAS  Google Scholar 

  171. Mathew B, Parambi DGT, Sivasankarapillai VS et al (2019) Perspective design of chalcones for the management of CNS disorders: a mini-review. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527318666190610111246

    Article  PubMed  Google Scholar 

  172. Lee SC, Kang NY, Park SJ, Yun SW, Chandran Y, Chang YT (2012) Development of a fluorescent chalcone library and its application in the discovery of a mouse embryonic stem cell probe. Chem Commun 48:6681–6683. https://doi.org/10.1039/c2cc31662e

    Article  CAS  Google Scholar 

  173. Ardiansah B (2019) Chalcones bearing N, O, and S-heterocycles: recent notes on their biological significances. J Appl Pharm Sci 9(8):117–129. https://doi.org/10.7324/JAPS.2019.90816

    Article  CAS  Google Scholar 

  174. Mathew B, Suresh J, Anbazghagan S, Paulraj J, Krishnan GK (2014) Heteroaryl chalcones: mini review about their therapeuti voyage. Biomed Prev Nutr. https://doi.org/10.1016/j.bionut.2014.04.003

    Article  Google Scholar 

  175. Viegas-Junior C, Danuello A, da Silva BV, Barreiro EJ, Fraga CAM (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14(17):1829–1852

    Article  CAS  PubMed  Google Scholar 

  176. Díaz-tielas C, Graña E, Reigosa MJ, Sánchez-Moreiras AM (2016) Biological activities and novel applications of chalcones. Planta Daninha 34(3):607–616. https://doi.org/10.1590/S0100-83582016340300022

    Article  Google Scholar 

  177. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5(47):1–15. https://doi.org/10.1017/jns.2016.41

    Article  CAS  Google Scholar 

  178. Sharma B, Agrawal SC, Gupta KC (2008) Colour reactions of chalcones and their mechanisms (a review). Orient J Chem 24(4):289–294

    CAS  Google Scholar 

  179. Perez-Vizcaino F, Fraga CG (2018) Research trends in flavonoids and health. Arch Biochem Biophys 646:107–112. https://doi.org/10.1016/j.abb.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  180. Procházková D, Bousová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:516–523. https://doi.org/10.1016/j.fitote.2011.01.018

    Article  CAS  Google Scholar 

  181. Ayaz M, Sadiq A, Junaid M et al (2019) Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci 11:1–20. https://doi.org/10.3389/fnagi.2019.00155

    Article  CAS  Google Scholar 

  182. Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D (2019) Phytochemicals and cognitive health: are flavonoids doing the trick? Biomed Pharmacother 109:1488–1497. https://doi.org/10.1016/j.biopha.2018.10.086

    Article  CAS  PubMed  Google Scholar 

  183. Magalingam KB, Radhakrishnan AK, Haleagrahara N (2015) Protective mechanisms of flavonoids in Parkinson’s disease. Oxid Med Cell Longev 2015:1–14. https://doi.org/10.1155/2015/314560

    Article  CAS  Google Scholar 

  184. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  185. Maleki SJ, Crespo JF, Cabanillas B (2019) Anti-inflammatory effects of flavonoids. Food Chem 299(125124):1–11. https://doi.org/10.1016/j.foodchem.2019.125124

    Article  CAS  Google Scholar 

  186. Ji X, Melman N, Jacobson KA (1995) Interactions of flavonoids and other phytochemicals with adenosine receptors. J Med Chem 39(3):781–788

    Article  Google Scholar 

  187. Karton Y, Jiang J, Ji X et al (1996) Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. J Med Chem 39(12):2293–2301

    Article  CAS  PubMed  Google Scholar 

  188. Moro S, van Rhee AM, Sanders LH, Jacobson KA (1998) Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. J Med Chem 41(1):46–52

    Article  CAS  PubMed  Google Scholar 

  189. Okajima F, Akbar M, Majid MA (1994) Genistein, an inhibitor of protein tyrosine kinase, is also a competitive antagonist for P1-purinergic (adenosine) receptor in FRTL-5 thyroid cells. Biochem Biophys Res Commun 203(3):1488–1495

    Article  CAS  PubMed  Google Scholar 

  190. Kim TH, Custodio RJ, Cheong JH, Kim HJ, Jung YS (2019) Sleep promoting effect of luteolin in mice via adenosine A1 and A2A receptors. Biomol Ther 27(6):584–590. https://doi.org/10.4062/biomolther.2019.149

    Article  CAS  Google Scholar 

  191. Hasrat JA, De Bruyne T, De Backer JP, Vauquelin G, Vlietinck A (1997) Cirsimarin and cirsimaritin, flavonoids of Microtea debilis (phytolaccaceae) with adenosine antagonistic properties in rats: leads for new therapeutics in acute renal failure. J Pharm Pharmacol 49:1150–1156

    Article  CAS  PubMed  Google Scholar 

  192. Yuliana ND, Khatib A, Link-Struensee AMR et al (2009) Adenosine A1 receptor binding activity of methoxy flavonoids from Orthosiphon stamineus. Planta Med 75:132–136. https://doi.org/10.1055/s-0028-1088379

    Article  CAS  PubMed  Google Scholar 

  193. Lee HE, Jeon SJ, Ryu B et al (2016) Swertisin, a C-glucosylflavone, ameliorates scopolamine-induced memory impairment in mice with its adenosine A1 receptor antagonistic property. Behav Brain Res 306:137–145. https://doi.org/10.1016/j.bbr.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  194. Delage B (2015) Flavonoids. Linus Pauling Institute. https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids#sources. Accessed 8 Aug 2020

  195. Spencer JPE (2010) Beyond antioxidants: the cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. In: Over- and undernutrition: challenges and approaches, guildford, 2009. Proceedings of the Nutrition Society, pp 244–260. https://doi.org/10.1017/S0029665110000054

  196. Alexander SPH (2006) Flavonoids as antagonists at A1 adenosine receptors. Phytother Res 20:1009–1012. https://doi.org/10.1002/ptr.1975

    Article  CAS  PubMed  Google Scholar 

  197. van der Walt MM, Terre’Blanche G (2018) Benzopyrone represents a privilege scaffold to identify novel adenosine A1/A2A receptor antagonists. Bioorganic Chem 77:136–143. https://doi.org/10.1016/j.bioorg.2018.01.004

    Article  CAS  Google Scholar 

  198. Jacobson KA, Moro S, Manthey JA, West PL, Ji X (2002) Interactions of flavones and other phytochemicals with adenosine receptors. In: Buslig BS, Manthey JA (eds) Flavonoids in cell function, vol 505. Kluwer Academic/Plenum Publishers, New York, pp 163–172. https://doi.org/10.1007/978-1-4757-5235-9

    Chapter  Google Scholar 

  199. Wen X, Walle T (2006) Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos 34(10):1786–1792. https://doi.org/10.1124/dmd.106.011122

    Article  CAS  PubMed  Google Scholar 

  200. Gaspar A, Reis J, Matos MJ, Uriarte E, Borges F (2012) In search for new chemical entities as adenosine receptor ligands: development of agents based on benzo-γ-pyrone skeleton. Eur J Med Chem 54:914–918. https://doi.org/10.1016/j.ejmech.2012.05.033

    Article  CAS  PubMed  Google Scholar 

  201. Matos MJ, Gaspar A, Kachler S et al (2013) Targeting adenosine receptors with coumarins: synthesis and binding activities of amide and carbamate derivatives. J Pharm Pharmacol 65:30–34. https://doi.org/10.1111/j.2042-7158.2012.01571.x

    Article  CAS  PubMed  Google Scholar 

  202. Matos MJ, Hogger V, Gaspar A et al (2013) Synthesis and adenosine receptors binding affinities of a series of 3-arylcoumarins. J Pharm Pharmacol 65:1590–1597. https://doi.org/10.1111/jphp.12135

    Article  CAS  PubMed  Google Scholar 

  203. Matos MJ, Vilar S, Kachler S et al (2014) Insight into the interactions between novel coumarin derivatives and human A3 adenosine receptors. ChemMedChem 9:2245–2253. https://doi.org/10.1002/cmdc.201402205

    Article  CAS  PubMed  Google Scholar 

  204. Matos MJ, Vilar S, Kachler S et al (2015) Development of novel adenosine receptor ligands based on the 3-amidocoumarin scaffold. Bioorganic Chem 61:1–6. https://doi.org/10.1016/j.bioorg.2015.05.008

    Article  CAS  Google Scholar 

  205. Matos MJ, Vilar S, Vazquez-Rodriguez S et al (2020) Structure-based optimization of coumarin hA3 adenosine receptor antagonists. J Med Chem 63:2577–2587. https://doi.org/10.1021/acs.jmedchem.9b01572

    Article  CAS  PubMed  Google Scholar 

  206. Vazquez-Rodriguez S, Matos MJ, Santana L et al (2013) Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J Pharm Pharmacol 65:697–703. https://doi.org/10.1111/jphp.12028

    Article  CAS  PubMed  Google Scholar 

  207. Pieterse L, van der Walt MM, Terre’Blanche G (2020) C2-substituted quinazolinone derivatives exhibit A1 and/or A2A adenosine receptor affinities in the low micromolar range. Bioorganic Med Chem Lett 30:1–7. https://doi.org/10.1016/j.bmcl.2020.127274

    Article  CAS  Google Scholar 

  208. Mosti L, Fossa P, Menozzi G, Trincavelli L, Floreani M (2008) Quinolinedione nucleus as a novel scaffold for A1 and A2A adenosine receptor antagonists. Med Chem Res 17:587–603. https://doi.org/10.1007/s00044-008-9100-9

    Article  CAS  Google Scholar 

  209. McGuinness BF, Ho KK, Stauffer TM et al (2010) Discovery of novel quinolinone adenosine A2B antagonists. Bioorganic Med Chem Lett 20:7414–7420. https://doi.org/10.1016/j.bmcl.2010.10.030

    Article  CAS  Google Scholar 

  210. Langmead CJ, Andrews SP, Congreve M et al (2012) Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem 55:1904–1909. https://doi.org/10.1021/jm201455y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gaspar A, Reis J, Kachler S et al (2012) Discovery of novel A3 adenosine receptor ligands based on chromone scaffold. Biochem Pharmacol 84:21–29. https://doi.org/10.1016/j.bcp.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  212. Cagide F, Gaspar A, Reis J et al (2015) Navigating in chromone chemical space: discovery of novel and distinct A3 adenosine receptor ligands. RSC Adv 5:78572–78585. https://doi.org/10.1039/c5ra14988f

    Article  CAS  Google Scholar 

  213. Cagide F, Reis J, Gaspar A et al (2016) Discovery of the first A1 adenosine receptor ligand based on the chromone scaffold. RSC Adv 6:46972–46976. https://doi.org/10.1039/c6ra02347a

    Article  CAS  Google Scholar 

  214. Zwergel C, Gaascht F, Valente S, Diederich M, Bagrel D, Kirsch G (2012) Aurones: interesting natural and synthetic compounds with emerging biological potential. Nat Prod Commun 7(3):389–394

    CAS  PubMed  Google Scholar 

  215. Legoabe LJ, Van der Walt MM, Terre’Blanche G (2018) Evaluation of 2-benzylidene-1-tetralone derivatives as antagonists of A1 and A2A adenosine receptors. Chem Biol Drug Des 91(1):234–244. https://doi.org/10.1111/cbdd.13074

    Article  CAS  PubMed  Google Scholar 

  216. Janse van Rensburg HD, Terre’Blanche G, van der Walt MM, Legoabe LJ (2017) 5-Substituted 2-benzylidene-1-tetralone analogues as A1 and/or A2A antagonists for the potential treatment of neurological conditions. Bioorganic Chem 74:251–259. https://doi.org/10.1016/j.bioorg.2017.08.013

    Article  CAS  Google Scholar 

  217. Janse van Rensburg HD, Legoabe LJ, Terre’Blanche G, Van der Walt MM (2019) 2-Benzylidene-1-indanone analogues as dual adenosine A1/A2a receptor antagonists for the potential treatment of neurological conditions. Drug Res 69(7):382–391. https://doi.org/10.1055/a-0808-3993

    Article  CAS  Google Scholar 

  218. Janse van Rensburg HD, Legoabe LJ, Terre’Blanche G, Van der Walt MM (2019) Methoxy substituted 2-benzylidene-1-indanone derivatives as A1 and/or A2A AR antagonists for the potential treatment of neurological conditions. MedChemComm 10(2):300–309. https://doi.org/10.1039/c8md00540k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Janse van Rensburg HD, Legoabe LJ, Terre’Blanche G, Aucamp J (2020) Synthesis and evaluation of methoxy substituted 2-benzoyl-1-benzofuran derivatives as lead compounds for the development adenosine A1 and/or A2A receptor antagonists. Bioorganic Chem 94:103459. https://doi.org/10.1016/j.bioorg.2019.103459

    Article  CAS  Google Scholar 

  220. Akahane A, Katayama H, Mitsunaga T et al (1996) Discovery of FK453, a novel non-xanthine adenosine A1 receptor antagonist. Bioorganic Med Chem Lett 6(17):2059–2062

    Article  CAS  Google Scholar 

  221. Terai T, Kusunoki T, Kita Y et al (1997) FK453: a novel non-xanthine adenosine A1 receptor antagonist as diuretic. Cardiovasc Drug Rev 15(1):44–58

    Article  CAS  Google Scholar 

  222. Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55:9763–9772. https://doi.org/10.1021/jm301008n

    Article  CAS  PubMed  Google Scholar 

  223. Zhou B, Xing C (2015) Diverse molecular targets for chalcones with varied bioactivities. Med Chem 5(8):388–404. https://doi.org/10.4172/2161-0444.1000291

    Article  CAS  Google Scholar 

  224. Kalgutkar AS, Gardner I, Obach RS et al (2005) A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6(3):161–225. https://doi.org/10.2174/1389200054021799

    Article  CAS  PubMed  Google Scholar 

  225. Katritzky AR, Denisko OV (2019) Heterocyclic compound. Encyclopædia Britannica, Inc. https://www.britannica.com/science/heterocyclic-compound Accessed 13 Aug 2020

  226. Njaroarson Group (2019) Top 200 pharmaceuticals by retail sales in 2019. University of Arizona. https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster. Accessed 1 Dec 2020

  227. Kaur R, Rani V, Abbot V, Kapoor Y, Konar D, Kumar K (2017) Recent synthetic and medicinal perspectives of pyrroles: an overview. J Pharm Chem Chem Sci 1(1):17–32

    Google Scholar 

  228. Bellina F, Rossi R (2006) Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron Lett 62:7213–7256. https://doi.org/10.1016/j.tet.2006.05.024

    Article  CAS  Google Scholar 

  229. Rajakumar P, Raja S, Thirunarayanan A (2010) A facile synthesis of novel pyrrolidine dendrimers by terminal group modification through 1,3-dipolar cycloaddition reaction. Synlett 11:1669–1673. https://doi.org/10.1055/s-0030-1258082

  230. Moemeni M, Arvinnezhag H, Samadi S, Tajbakhsh M, Jadidi K, Khavasi HR (2012) An efficient multicomponent and stereoselective synthesis of new spiro[indeno[1,2-b]quinoxaline-11,2’-pyrrolidine] derivatives. J Heterocycl Chem 49:190–194. https://doi.org/10.1002/jhet

    Article  CAS  Google Scholar 

  231. Adib M, Mahdavi M, Noghani MA, Bijanzadeh HR (2007) Reaction between isocyanides and chalcones: an efficient solvent-free synthesis of 5-hydroxy-3,5-diaryl-1,5-dihydro-2H-pyrrol-2-ones. Tetrahedron Lett 48:8056–8059. https://doi.org/10.1016/j.tetlet.2007.09.030

    Article  CAS  Google Scholar 

  232. Zheng D, Li S, Luo Y, Wu J (2011) An efficient route to tetrahydroindeno[2,1-b]pyrroles via a base-promoted reaction of (E)-2-alkynylphenylchalcone with 2-isocyanoacetate. Org Lett 13(24):6402–6405. https://doi.org/10.1021/ol202708f

    Article  CAS  PubMed  Google Scholar 

  233. Suresh R, Muthusubramanian S, Nagaraj M, Manickam G (2013) Indium trichloride catalyzed regioselective synthesis of substituted pyrroles in water. Tetrahedron Lett 54:1779–1784. https://doi.org/10.1016/j.tetlet.2012.11.065

    Article  CAS  Google Scholar 

  234. Ishiyama H, Nakajima H, Nakata H, Kobayashi J (2009) Synthesis of hybrid analogues of caffeine and eudistomin D and its affinity for adenosine receptors. Bioorganic Med Chem 17:4280–4284. https://doi.org/10.1016/j.bmc.2009.05.036

    Article  CAS  Google Scholar 

  235. Ohshita K, Ishiyama H, Oyanagi K, Nakata H, Kobayashi J (2007) Synthesis of hybrid molecules of caffeine and eudistomin D and its effects on adenosine receptors. Bioorganic Med Chem 15:3235–3240. https://doi.org/10.1016/j.bmc.2007.02.043

    Article  CAS  Google Scholar 

  236. Grahner B, Winiwarter S, Lanzner W, Müller CE (1994) Synthesis and structure-activity relationships of deazaxanthines: analogs of potent A1- and A2-adenosine receptor antagonists. J Med Chem 37:1526–1534

    Article  CAS  PubMed  Google Scholar 

  237. Gillespie RJ, Cliffe IA, Dawson CE et al (2008) Antagonists of the human adenosine A2A receptor. Part 3: design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines. Bioorganic Med Chem Lett 18:2924–2929. https://doi.org/10.1016/j.bmcl.2008.03.072

    Article  CAS  Google Scholar 

  238. Güngör T, Malabre P, Teulon J et al (1994) N6-substituted adenosine receptor agonists. Synthesis and pharmacological activity as potent antinociceptive agents. J Med Chem 37(25):4307–4316

    Article  PubMed  Google Scholar 

  239. Müller CE, Geis U, Grahner B, Lanzner W, Eger K (1996) Chiral pyrrolo[2,3-d]pyrimidine and pyrimido[4,5-b]indole derivatives: structure-activity relationships of potent, highly stereoselective A1-adenosine receptor antagonists. J Med Chem 39:2482–2491

    Article  PubMed  Google Scholar 

  240. Ke Z, Yeung YY (2019) Furans and their benzo derivatives: applications. Chem Mol Sci Chem Eng. https://doi.org/10.1016/B978-0-12-409547-2.14770-5

    Article  Google Scholar 

  241. Trofimov BA, Bidusenko IA, Schmidt EY, Ushakov IA, Vashchenko AV (2017) Acetylene as a driving and organizing molecule in one-pot transition metal-free synthesis of furans using chalcones and their analogues. Asian J Org Chem 6(6):707–711. https://doi.org/10.1002/ajoc.201700085

    Article  CAS  Google Scholar 

  242. Yang X, Dong G, Michiels TJM et al (2017) A covalent antagonist for the human adenosine A2A receptor. Purinergic Signal 13:191–201. https://doi.org/10.1007/s11302-016-9549-9

    Article  CAS  PubMed  Google Scholar 

  243. Betti M, Catarzi D, Varano F et al (2019) Modifications on the amino-3,5-dicyanopyridine core to obtain multifaceted adenosine receptor ligands with antineuropathic activity. J Med Chem 62:6894–6912. https://doi.org/10.1021/acs.jmedchem.9b00106

    Article  CAS  PubMed  Google Scholar 

  244. Balo MC, Brea J, Caamano O et al (2009) Synthesis and pharmacological evaluation of novel 1- and 8-substituted-3-furfuryl xanthines as adenosine receptor antagonists. Bioorganic Med Chem 17:6755–6760. https://doi.org/10.1016/j.bmc.2009.07.034

    Article  CAS  Google Scholar 

  245. El Maatougui A, Azuaje J, González-Gómez M et al (2016) Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. J Med Chem 59:1967–1983. https://doi.org/10.1021/acs.jmedchem.5b01586

    Article  CAS  PubMed  Google Scholar 

  246. Carbajales C, Azuaje J, Oliveira A et al (2017) Enantiospecific recognition at the A2B adenosine receptor by alkyl 2-cyanoimino-4-substituted-6-methyl-1,2,3,4-tetrahydropyrimidine-5-carboxylates. J Med Chem 60:3372–3382. https://doi.org/10.1021/acs.jmedchem.7b00138

    Article  CAS  PubMed  Google Scholar 

  247. Saku O, Saki M, Kurokawa M, Ikeda K, Takizawa T, Uesaka N (2010) Synthetic studies on selective adenosine A2A receptor antagonists: synthesis and structure–activity relationships of novel benzofuran derivatives. Bioorganic Med Chem Lett 20:1090–1093. https://doi.org/10.1016/j.bmcl.2009.12.028

    Article  CAS  Google Scholar 

  248. Kumar V, Kaur K, Gupta GK, Sharma AK (2013) Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 69:735–753. https://doi.org/10.1016/j.ejmech.2013.08.053

    Article  CAS  PubMed  Google Scholar 

  249. Mert S, Kasimogullari R, Ok S (2014) A short review on pyrazole derivatives and their applications. J Postdr Res 2(4):64–72

    Google Scholar 

  250. Naim MJ, Alam O, Nawaz F, Alam MJ, Alam P (2016) Current status of pyrazole and its biological activities. J Pharm Bioallied Sci 8:2–17. https://doi.org/10.4103/0975-7406.171694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yusuf M, Jain P (2014) Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab J Chem 7:553–596. https://doi.org/10.1016/j.arabjc.2011.09.013

    Article  CAS  Google Scholar 

  252. Azarifar D, Ghasemnejad H (2003) Microwave-assisted synthesis of some 3,5-arylated 2-pyrazolines. Molecules 8:642–648

    Article  CAS  PubMed Central  Google Scholar 

  253. Denya I, Malan S, Joubert J (2018) Indazole derivatives and their therapeutic applications: a patent review (2013–2017). Expert Opin Ther Pat. https://doi.org/10.1080/13543776.2018.1472240

    Article  PubMed  Google Scholar 

  254. Zhang SG, Liang CG, Zhang WH (2018) Recent advances in indazole-containing derivatives: synthesis and biological perspectives. Molecules 23:1–41. https://doi.org/10.3390/molecules23112783

    Article  CAS  Google Scholar 

  255. Loh WS, Quah CK, Chia TS et al (2013) Synthesis and crystal structures of N-substituted pyrazolines. Molecules 18(2):2386–2396. https://doi.org/10.3390/molecules18022386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Voskienė A, Mickevičius V (2009) Cyclization of chalcones to isoxazole and pyrazole derivatives. Chem Heterocycl Compd 45(12):1485–1488

    Article  CAS  Google Scholar 

  257. Aggarwal R, Kumar V, Singh SP (2007) Synthesis of some new 1-(6-fluorobenzothiazol-2-yl)-3-(4-fluorophenyl)-5-arylpyrazolines and their iodine(III) mediated oxidation to corresponding pyrazoles. ChemInform. https://doi.org/10.1002/chin.200750139

    Article  Google Scholar 

  258. Desai VG, Satardekar PC, Polo S, Dhumaskar K (2012) Regioselective synthesis of 1,3,5-trisubstituted pyrazoles. Synth Commun 42(6):836–842. https://doi.org/10.1080/00397911.2010.531492

    Article  CAS  Google Scholar 

  259. Agrawal NN, Soni PA (2007) Synthesis of pyrazole and isoxazole in triethanolamine medium. Indian J Chem 46:532–534. https://doi.org/10.1002/chin.200729039

    Article  Google Scholar 

  260. El-Gohary NS (2014) Arylidene derivatives as synthons in heterocyclic synthesis. Open Access Libr J 1:1–47. https://doi.org/10.4236/oalib.1100367

    Article  Google Scholar 

  261. Zhang H, Wei Q, Zhu G, Qu J, Wang B (2016) A facile and expeditious approach to substituted 1H -pyrazoles catalyzed by iodine. Tetrahedron Lett 57(24):2633–2637. https://doi.org/10.1016/j.tetlet.2016.05.020

    Article  CAS  Google Scholar 

  262. Elzein E, Kalla RV, Li X et al (2008) Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate for chronic inflammatory airway diseases. J Med Chem 51(7):2267–2278. https://doi.org/10.1021/jm7014815

    Article  CAS  PubMed  Google Scholar 

  263. Kalla RV, Elzein E, Perry T et al (2008) Selective, high affinity A2B adenosine receptor antagonists: N-1 monosubstituted 8-(pyrazol-4-yl)xanthines. Bioorganic Med Chem Lett 18:1397–1401. https://doi.org/10.1016/j.bmcl.2008.01.008

    Article  CAS  Google Scholar 

  264. Baraldi PG, Baraldi S, Saponaro G et al (2012) Novel 1,3-dipropyl-8-(3-benzimidazol-2-yl-methoxy-1-methylpyrazol-5-yl)xanthines as potent and selective A2B adenosine receptor antagonists. J Med Chem 55:797–811. https://doi.org/10.1021/jm201292w

    Article  CAS  PubMed  Google Scholar 

  265. Varani K, Gessi S, Merighi S et al (2005) Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochem Pharmacol 70:1601–1612. https://doi.org/10.1016/j.bcp.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  266. Cheong SL, Venkatesan G, Paira P et al (2011) Pyrazolo derivatives as potent adenosine receptor antagonists: an overview on the structure-activity relationships. Int J Med Chem 2011:1–15. https://doi.org/10.1155/2011/480652

    Article  CAS  Google Scholar 

  267. Daraji DG, Prajapati NP, Patel HD (2019) Synthesis and applications of 2-substituted imidazole and its derivatives: a review. J Heterocycl Chem 56:2299–2317. https://doi.org/10.1002/jhet.3641

    Article  CAS  Google Scholar 

  268. Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH (2014) Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 34(2):340–437. https://doi.org/10.1002/med.21290

    Article  CAS  PubMed  Google Scholar 

  269. Gaba M, Mohan C (2016) Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med Chem Res 25:173–210. https://doi.org/10.1007/s00044-015-1495-5

    Article  CAS  Google Scholar 

  270. Poli D, Falsini M, Varano F et al (2017) Imidazo[1,2-a]pyrazin-8-amine core for the design of new adenosine receptor antagonists: structural exploration to target the A3 and A2A subtypes. Eur J Med Chem 125:611–628. https://doi.org/10.1016/j.ejmech.2016.09.076

    Article  CAS  PubMed  Google Scholar 

  271. Pandya AN, Baraiya AB, Jalani HB et al (2018) Discovery of 2-aminoimidazole and 2-aminoimidazolyl-thiazoles as non-xanthine human adenosine A3 receptor antagonists: SAR and molecular modeling studies. MedChemComm 9:676–684. https://doi.org/10.1039/c7md00643h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Nshimyumukiza P, Van den Berge E, Delest B et al (2010) Synthesis and biologica levaluation of novel imidazole-containing macrocycles. Tetrahedron 66:4515–4520. https://doi.org/10.1016/j.tet.2010.04.070

    Article  CAS  Google Scholar 

  273. Areias F, Costa M, Castro M et al (2012) New chromene scaffolds for adenosine A2A receptors: synthesis, pharmacology and structureeactivity relationships. Eur J Med Chem 54:303–310. https://doi.org/10.1016/j.ejmech.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  274. Lefin R, van der Walt MM, Milne PJ, Terre’Blanche G (2017) Imidazo[1,2-α]pyridines possess adenosine A1 receptor affinity for the potential treatment of cognition in neurological disorders. Bioorganic Med Chem Lett 27(17):3963–3967. https://doi.org/10.1016/j.bmcl.2017.07.071

    Article  CAS  Google Scholar 

  275. Zhu J, Mo J, Lin H, Chen Y, Sun H (2018) The recent progress of isoxazole in medicinal chemistry. Bioorganic Med Chem 26:3065–3075. https://doi.org/10.1016/j.bmc.2018.05.013

    Article  CAS  Google Scholar 

  276. Raja S, Krishna VC (2017) Isoxazole—a potent pharmacophore. Int J Pharm Pharm Sci 9(7):13–24. https://doi.org/10.22159/ijpps.2017v9i7.19097

    Article  Google Scholar 

  277. Bhatt A, Singh RK, Kant R (2019) Trichloroisocyanuric acid mediated one-pot synthesis of 3,5-diarylisoxazoles from α,β-unsaturated ketones. Synth Commun 49(8):1083–1091. https://doi.org/10.1080/00397911.2019.1590848

    Article  CAS  Google Scholar 

  278. Li Z, Wen G, Fu R, Yang J (2016) Aerobic oxidative synthesis of 3,5-disubstituted isoxazoles directly from α, β-unsaturated ketones. J Chem Res 40:643–644. https://doi.org/10.3184/174751916X14744677622496

    Article  CAS  Google Scholar 

  279. Morrison CF, Elzein E, Jiang B et al (2004) Structure-affinity relationships of 5’-aromatic ethers and 5’-aromatic sulfides as partial A1 adenosine agonists, potential supraventricular anti-arrhythmic agents. Bioorganic Med Chem Lett 14:3793–3797. https://doi.org/10.1016/j.bmcl.2004.04.096

    Article  CAS  Google Scholar 

  280. Baraldi PG, Romagnoli R, Tabrizi MA et al (2005) New heterocyclic ligands for the adenosine receptors P1 and for the ATP receptors P2. Il Farmaco 60:185–202. https://doi.org/10.1016/j.farmac.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  281. Basu S, Barawkar DA, Ramdas V et al (2017) A2B adenosine receptor antagonists: design, synthesis and biological evaluation of novel xanthine derivatives. Eur J Med Chem 127:986–996. https://doi.org/10.1016/j.ejmech.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  282. Joshi S, Bisht AS, Juyal D (2017) Systematic scientific study of 1,3-oxazole derivatives as a useful lead for pharmaceuticals: a review. Pharma Innov J 6(1):109–117

    CAS  Google Scholar 

  283. Mhlongo JT, Brasil E, de la Torre BG, Albericio F (2020) Naturally occurring oxazole-containing peptides. Mar Drugs 18(4):203. https://doi.org/10.3390/md18040203

    Article  CAS  PubMed Central  Google Scholar 

  284. Kakkar S, Narasimhan B (2019) A comprehensive review on biological activities of oxazole derivatives. BMC Chem 13(1):16. https://doi.org/10.1186/s13065-019-0531-9

    Article  PubMed  PubMed Central  Google Scholar 

  285. Liu D, Yu J, Cheng J (2014) Copper-catalyzed oxidative cyclization of chalcone and benzylic amine leading to 2,5-diaryl oxazoles via carbonecarbon double bond cleavage. Tetrahedron 70:1149–1153. https://doi.org/10.1016/j.tet.2013.12.077

    Article  CAS  Google Scholar 

  286. Duroux R, Agouridas L, Renault N, El Bakali J, Furman C, Melnyk P, Yous S (2018) Antagonists of the adenosine A2A receptor based on a 2-arylbenzoxazole scaffold: investigation of the C5- and C7-positions to enhance affinity. Eur J Med Chem 144:151–163. https://doi.org/10.1016/j.ejmech.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  287. Drabczynska A, Müller CE, Schumacher B et al (2004) Tricyclic oxazolo[2,3-f]purinediones: potency as adenosine receptor ligands and anticonvulsants. Bioorganic Med Chem 12:4895–4908. https://doi.org/10.1016/j.bmc.2004.06.043

    Article  CAS  Google Scholar 

  288. Franchetti P, Cappellacci L, Marchetti S et al (2000) C-Nucleoside analogues of furanfurin as ligands to A1 adenosine receptors. Bioorganic Med Chem 8:2367–2373

    Article  CAS  Google Scholar 

  289. Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzym Inhib Med Chem 26(1):1–21. https://doi.org/10.3109/14756360903524304

    Article  CAS  Google Scholar 

  290. Dheer D, Singh V, Shankar R (2017) Medicinal attributes of 1,2,3-triazoles: current developments. Bioorganic Chem 71:30–54. https://doi.org/10.1016/j.bioorg.2017.01.010

    Article  CAS  Google Scholar 

  291. Ezzat HG, Bayoumi AH, Sherbiny FF et al (2020) Design, synthesis, and molecular docking studies of new [1,2,4]triazolo[4,3-a]quinoxaline derivatives as potential A2B receptor antagonists. Mol Diversity. https://doi.org/10.1007/s11030-020-10070-w

    Article  Google Scholar 

  292. Martinez A, Gutiérrez-de-Terán H, Brea J et al (2008) Synthesis, adenosine receptor binding and 3D-QSAR of 4-substituted 2-(2’-furyl)-1,2,4-triazolo[1,5-a]quinoxalines. Bioorganic Med Chem 16:2103–2113. https://doi.org/10.1016/j.bmc.2007.10.103

    Article  CAS  Google Scholar 

  293. Leleti MR, Miles DH, Powers JP, Rosen BR, Sharif EU, Thomas-Tran R (2018) Quinazoline-pyridine derivatives for the treatment of cancer-related disorders. United States Patent WO/2018/204661, 8 Nov 2018

  294. Leleti MR, Miles DH, Powers JP, Rosen BR, Sharif EU (2018) Quinazoline-pyrazole derivatives for the treatment of cancer-related disorders. United States Patent WO/2018/213377, 22 Nov 2018

  295. Ongini E (1997) SCH 58261: a selective A2A adenosine receptor antagonist. Drug Dev Res 42:63–70

    Article  CAS  Google Scholar 

  296. Merck (2013) Merck provides update on phase III clinical program for preladenant, the company’s investigational Parkinson’s disease medicine. Business Wire. https://www.mrknewsroom.com/press-release/research-and-development-news/merck-provides-update-phase-iii-clinical-program-prelade. Accessed 24 Jan 2021

  297. Mishra CB, Barodia SK, Prakash A, Kumar JBS, Luthra PM (2010) Novel 8-(furan-2-yl)-3-substituted thiazolo[5,4-e][1,2,4] triazolo[1,5-c]pyrimidine-2(3H)-thione derivatives as potential adenosine A2A receptor antagonists. Bioorganic Med Chem 18:2491–2500. https://doi.org/10.1016/j.bmc.2010.02.048

    Article  CAS  Google Scholar 

  298. Barodia SK, Mishra CB, Prakash A, Kumar JBS, Kumari N, Luthra PM (2011) Novel 8-(furan-2-yl)-3-benzyl thiazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thione as selective adenosine A2A receptor antagonist. Neurosci Lett 488:1–5. https://doi.org/10.1016/j.neulet.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  299. Federico S, Margiotta E, Salmaso V et al (2018) [1,2,4]Triazolo[1,5-c]pyrimidines as adenosine receptor antagonists: modifications at the 8 position to reach selectivity towards A3 adenosine receptor subtype. Eur J Med Chem 157:837–851. https://doi.org/10.1016/j.ejmech.2018.08.042

    Article  CAS  PubMed  Google Scholar 

  300. Redenti S, Ciancetta A, Pastorin G et al (2016) Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines and structurally simplified analogs. Chemistry and SAR profile as adenosine receptor antagonists. Curr Top Med Chem 16(28):3224–3257. https://doi.org/10.2174/1568026616666160506145831

    Article  CAS  PubMed  Google Scholar 

  301. Cosimelli B, Greco G, Ehlardo M et al (2008) Derivatives of 4-amino-6-hydroxy-2-mercaptopyrimidine as novel, potent, and selective A3 adenosine receptor antagonists. J Med Chem 51(6):1764–1770. https://doi.org/10.1021/jm701159t

    Article  CAS  PubMed  Google Scholar 

  302. Shaik K, Deb PK, Mailavaram RP et al (2019) 7-amino-2-aryl/hetero-aryl-5-oxo-5,8-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitriles: synthesis and adenosine receptor binding studies. Chem Biol Drug Des 94:1568–1573. https://doi.org/10.1111/cbdd.13528

    Article  CAS  PubMed  Google Scholar 

  303. Powderly JD, de Souza PL, Gutierrez R et al (2019) AB928, a novel dual adenosine receptor antagonist, combined with chemotherapy or AB122 (anti-PD-1) in patients (pts) with advanced tumors: preliminary results from ongoing phase I studies. J Clin Oncol 37(15):2604. https://doi.org/10.1200/JCO.2019.37.15_suppl.2604

    Article  Google Scholar 

  304. U.S. National Library of Medicine (2021) AB928. https://clinicaltrials.gov/ct2/results?cond=&term=AB928&cntry=&state=&city=&dist=&Search=Search. Accessed 23 Jan 2021

  305. Zhang Y, Li X, Li J et al (2012) CuO-promoted construction of N-2-aryl-substituted-1,2,3-triazoles via azide-chalcone oxidative cycloaddition and post-triazole arylation. Org Lett 14(1):26–29. https://doi.org/10.1021/ol202718d

    Article  CAS  PubMed  Google Scholar 

  306. Kamal A, Swapna P (2013) An improved iron-mediated synthesis of N-2-aryl substituted 1,2,3-triazoles. RSC Adv 3:7419–7426. https://doi.org/10.1039/c3ra22485f

    Article  CAS  Google Scholar 

  307. Ramsay W (1876) On picoline and its derivatives. Philos Mag J Sci 2(5):269–281

    Article  Google Scholar 

  308. Altaf AA, Shahzad A, Gul Z et al (2015) A review on the medicinal importance of pyridine derivatives. J Drug Des Med Chem 1(1):1–11. https://doi.org/10.11648/j.jddmc.20150101.11

    Article  Google Scholar 

  309. Dressler H (2006) Pyridine and derivatives. Van Nostrand's Encyclopedia of Chemistry. John Wiley & Sons, Inc. https://doi.org/10.1002/0471743984.vse5857

  310. Solankee A, Patel K, Patel R (2013) Antimicrobial evaluation of some novel isoxazoles, cyanopyridines and pyrimidinthiones. Indian J Chem 52B:671–676

    CAS  Google Scholar 

  311. El-Shehry MF, Swellem RH, Abu-Bakr Sh M, el-Telbani EM (2010) Synthesis and molluscicidal evaluation of some new pyrazole, isoxazole, pyridine, pyrimidine, 1,4-thiazine and 1,3,4-thiadiazine derivatives incorporating benzofuran moiety. Eur J Med Chem 45(11):4783–4787. https://doi.org/10.1016/j.ejmech.2010.07.043

  312. Rosentreter U, Krämer T, Shimada M et al. (2002) Substituted 2-thio-3,5-dicyano-4-phenyl-6-aminopyridines and their use as adenosine receptor-selective ligands. United States Patent US7045631B2, 16 May 2006

  313. Heitman LH, Mulder-Krieger T, Spanjersberg RF, von Frijtag Drabbe Künzel JK, Dalpiaz A, Ijzerman AP (2006) Allosteric modulation, thermodynamics and binding to wild-type and mutant (T277A) adenosine A1 receptors of LUF5831, a novel nonadenosine-like agonist. Br J Pharmacol 147:533–541. https://doi.org/10.1038/sj.bjp.0706655

  314. Albrecht-Küpper BE, Leineweber K, Nell PG (2012) Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal 8:S92–S99. https://doi.org/10.1007/s11302-011-9274-3

    Article  CAS  Google Scholar 

  315. Baltos J, Vecchio EA, Harris MA et al (2017) Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochem Pharmacol 135:79–89. https://doi.org/10.1016/j.bcp.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  316. Louvel J, Guo D, Soethoudt M et al (2015) Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists. Eur J Med Chem 101:681–691. https://doi.org/10.1016/j.ejmech.2015.07.023

    Article  CAS  PubMed  Google Scholar 

  317. Beukers MW, Chang LCW, von Frijtag Drabbe Künzel JK et al (2004) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47(15):3707–3709. https://doi.org/10.1021/jm049947s

  318. Yang X, Dilweg MA, Osemwengie D et al (2020) Design and pharmacological profile of a novel covalent partial agonist for the adenosine A1 receptor. Biochem Pharmacol 180:1–11. https://doi.org/10.1016/j.bcp.2020.114144

    Article  CAS  Google Scholar 

  319. Catarzi D, Varano F, Varani K et al (2019) Amino-3,5-dicyanopyridines targeting the adenosine receptors. Ranging from pan ligands to combined A1/A2B partial agonists. Pharmaceuticals 12(159):1–22. https://doi.org/10.3390/ph12040159

    Article  CAS  Google Scholar 

  320. Chang LCW, von Frijtag Drabbe Künzel JK, Mulder-Krieger T et al (2007) 2,6,8-Trisubstituted 1-deazapurines as adenosine receptor antagonists. J Med Chem 50(4):828–834. https://doi.org/10.1021/jm0607956

  321. Aurelio L, Valant C, Figler H et al (2009) 3- and 6-substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as A1 adenosine receptor allosteric modulators and antagonists. Bioorganic Med Chem 17:7353–7361. https://doi.org/10.1016/j.bmc.2009.08.024

    Article  CAS  Google Scholar 

  322. van Rhee AM, Jiang J, Melman N, Olah ME, Stiles GL, Jacobson KA (1996) Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivity for A3 receptors. J Med Chem 39(15):2980–2989

    Article  PubMed  Google Scholar 

  323. Jiang J, van Rhee AM, Melman N, Ji X, Jacobson KA (1996) 6-phenyl-1,4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 39(23):4667–4675

    Article  CAS  PubMed  Google Scholar 

  324. Li AH, Moro S, Melman N, Ji X, Jacobson KA (1998) Structure-activity relationships and molecular modeling of 3,5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem 41(17):3186–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Jiang J, van Rhee AM, Chang LCW et al (1997) Structure-activity relationships of 4-(phenylethynyl)-6-phenyl-1,4-dihydropyridines as highly selective A3 adenosine receptor antagonists. J Med Chem 40(16):2596–2608

    Article  CAS  PubMed  Google Scholar 

  326. Azuaje J, Jespers W, Yaziji V et al (2017) Effect of nitrogen atom substitution in A3 adenosine receptor binding: N-(4,6-diarylpyridin-2-yl)acetamides as potent and selective antagonists. J Med Chem 60:7502–7511. https://doi.org/10.1021/acs.jmedchem.7b00860

    Article  CAS  PubMed  Google Scholar 

  327. Chandrasekaran B, Deb PK, Kachler S, Akkinepalli RR, Mailavaram R, Klotz KN (2018) Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido[2,3-d]pyrimidines and quinazolines. Med Chem Res 27:756–767. https://doi.org/10.1007/s00044-017-2099-z

    Article  CAS  Google Scholar 

  328. Weiss SM, Benwell K, Cliffe IA et al (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Neurology 61(11):S101–S106. https://doi.org/10.1212/01.wnl.0000095581.20961.7d

    Article  CAS  PubMed  Google Scholar 

  329. Vanda D, Zajdel P, Soural M (2019) Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur J Med Chem 181:1–25. https://doi.org/10.1016/j.ejmech.2019.111569

    Article  CAS  Google Scholar 

  330. Corvus Pharmaceuticals Inc (2020) Corvus Pharmaceuticals presents updated clinical data supporting and refining the adenosine gene signature’s ability to identify patients likely to respond to treatment with ciforadenant. Globe Newswire. https://corvuspharma.gcs-web.com/news-releases/news-release-details/corvus-pharmaceuticals-presents-updated-clinical-data-supporting. Accessed 23 Jan 2021

  331. Jain KS, Chitre TS, Miniyar PB et al (2006) Biological and medicinal significance of pyrimidines. Curr Sci 90(6):793–803

    CAS  Google Scholar 

  332. Rani J, Kumar S, Saini M, Mundlia J, Verma PK (2016) Biological potential of pyrimidine derivatives in a new era. Res Chem Intermed 42:6777–6804. https://doi.org/10.1007/s11164-016-2525-8

    Article  CAS  Google Scholar 

  333. Fathalla OA, Awad SM, Mohamed MS (2005) Synthesis of new 2-thiouracil-5-sulphonamide derivatives with antibacterial and antifungal activity. Arch Pharmacal Res 28(11):1205–1212

    Article  CAS  Google Scholar 

  334. Ramiz MM, El-Sayed WA, El-Tantawy AI, Abdel-Rahman AA (2010) Antimicrobial activity of new 4,6-disubstituted pyrimidine, pyrazoline, and pyran derivatives. Arch Pharmacal Res 33(5):647–654. https://doi.org/10.1007/s12272-010-0501-1

    Article  CAS  Google Scholar 

  335. Yejella RP, Atla SR (2011) A study of anti-inflammatory and analgesic activity of new 2,4,6-trisubstituted pyrimidines. Chem Pharm Bull 59(9):1079–1082

    Article  CAS  Google Scholar 

  336. El-Sawy ER, Mandour AH, Mahmoud K, Islam IE, Abo-Salem HM (2012) Synthesis, antimicrobial and anti-cancer activities of some new N-ethyl, N-benzyl and N-benzoyl-3-indolyl heterocycles. Acta Pharm 62:157–179. https://doi.org/10.2478/v10007-012-0020-3

    Article  CAS  PubMed  Google Scholar 

  337. Varano F, Catarzi D, Falsini M et al (2018) Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists. Bioorganic Med Chem 26:3688–3695. https://doi.org/10.1016/j.bmc.2018.05.048

    Article  CAS  Google Scholar 

  338. Bharate SB, Singh B, Kachler S et al (2016) Discovery of 7-(prolinol-N-yl)-2-phenylaminothiazolo[5,4-d]pyrimidines as novel non-nucleoside partial agonists for the A2A adenosine receptor: prediction from molecular modeling. J Med Chem 59:5922–5928. https://doi.org/10.1021/acs.jmedchem.6b00552

    Article  CAS  PubMed  Google Scholar 

  339. Luthra PM, Mishra CB, Jha PK, Barodia SK (2010) Synthesis of novel 7-imino-2-thioxo-3,7-dihydro-2H-thiazolo [4,5-d]pyrimidine derivatives as adenosine A2A receptor antagonists. Bioorganic Med Chem Lett 20:1214–1218. https://doi.org/10.1016/j.bmcl.2009.11.133

    Article  CAS  Google Scholar 

  340. Varano F, Catarzi D, Squarcialupi L et al (2015) Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation. Eur J Med Chem 96:105–121. https://doi.org/10.1016/j.ejmech.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  341. Venkatesan G, Paira P, Cheong SL et al (2014) Discovery of simplified N2-substituted pyrazolo[3,4-d]pyrimidine derivatives as novel adenosine receptor antagonists: efficient synthetic approaches, biological evaluations and molecular docking studies. Bioorganic Med Chem 22:1751–1765. https://doi.org/10.1016/j.bmc.2014.01.018

    Article  CAS  Google Scholar 

  342. Poulsen SA, Quinn RJ (1996) Synthesis and structure-activity relationship of pyrazolo[3,4-d]pyrimidines: potent and selective adenosine A1 receptor antagonists. J Med Chem 39(21):4156–4161

    Article  CAS  PubMed  Google Scholar 

  343. Lenzi O, Colotta V, Catarzi D et al (2009) 2-Phenylpyrazolo[4,3-d]pyrimidin-7-one as a new scaffold to obtain potent and selective human A3 adenosine receptor antagonists: new insights into the receptor-antagonist recognition. J Med Chem 52:7640–7652. https://doi.org/10.1021/jm900718w

    Article  CAS  PubMed  Google Scholar 

  344. Squarcialupi L, Colotta V, Catarzi D et al (2014) 7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: structural investigations at the 5-position to target human A1 and A2A adenosine receptors. Molecular modeling and pharmacological studies. Eur J Med Chem 84:614–627. https://doi.org/10.1016/j.ejmech.2014.07.060

    Article  CAS  PubMed  Google Scholar 

  345. Squarcialupi L, Colotta V, Catarzi D et al (2013) 2-Arylpyrazolo[4,3-d]pyrimidin-7-amino derivatives as new potent and selective human A3 adenosine receptor antagonists. Molecular modeling studies and pharmacological evaluation. J Med Chem 56(6):2256–2269. https://doi.org/10.1021/jm400068e

    Article  CAS  PubMed  Google Scholar 

  346. Squarcialupi L, Catarzi D, Varano F et al (2016) Structural refinement of pyrazolo[4,3-d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A3 adenosine receptor. Eur J Med Chem 108:117–133. https://doi.org/10.1016/j.ejmech.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  347. Sato N, Yuki Y, Shinohara H et al. (2012) Novel cyanopyrimidine derivative. United States Patent US2012/0022077A1, 26 Jan 2012

  348. Louvel J, Guo D, Agliardi M et al (2014) Agonists for the adenosine A1 receptor with tunable residence time. A case for nonribose 4-amino-6-aryl-5-cyano-2-thiopyrimidines. J Med Chem 57:3213–3222. https://doi.org/10.1021/jm401643m

    Article  CAS  PubMed  Google Scholar 

  349. van Veldhoven JPD, Chang LCW, von Frijtag Drabbe Künzel JK et al (2008) A new generation of adenosine receptor antagonists: from di- to trisubstituted aminopyrimidines. Bioorganic Med Chem 16:2741–2752. https://doi.org/10.1016/j.bmc.2008.01.013

  350. Cosimelli B, Greco G, Laneri S et al (2016) 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives as novel non-nucleoside agonists for the adenosine A1 receptor. Chem Biol Drug Des 88(5):724–729. https://doi.org/10.1111/cbdd.12801

    Article  CAS  PubMed  Google Scholar 

  351. Crespo A, El Maato