Skip to main content
Log in

Catalytic and non-catalytic amidation of carboxylic acid substrates

  • Short review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The present review offers an apt summary of amide bond formation with carboxylic acid substrates by taking advantage of several methods. Carboxamides can be regarded as a substantial part of organic and medicinal chemistry due to their utility in synthesizing peptides, lactams, and more than 25% of familiar drugs. Moreover, they play a leading role in the synthesis of bioactive products with anticancer, antifungal, and antibacterial properties. The data are arranged based on the type and amount of reagents used to conduct amidation and are also divided into the following categories: catalytic amidation of carboxylic acids, non-catalytic amidation, and transamidation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Scheme 2.
Fig. 2
Scheme 3.
Fig. 3
Fig. 4
Scheme 4.
Scheme 5.
Scheme 6.
Scheme 7.
Fig. 5
Fig. 6
Scheme 8.
Fig. 7
Scheme 9.
Scheme 10.
Fig. 8
Scheme 11.
Scheme 12.
Fig. 9
Fig. 10
Scheme 13.
Scheme 14.
Fig. 11
Scheme 15.
Scheme 16.
Scheme 17.
Scheme 18.
Scheme 19.
Fig. 12
Scheme 20.
Scheme 21.
Scheme 22.
Scheme 23.
Scheme 24.
Scheme 25.
Scheme 26.
Scheme 27.
Fig. 13
Scheme 28.
Scheme 29.
Scheme 30.
Scheme 31.
Scheme 32.
Scheme 33.
Fig. 14
Scheme 34.
Scheme 35.
Fig. 15
Scheme 36.
Scheme 37.
Scheme 38.
Fig. 16
Scheme 39.
Scheme 40.
Scheme 41.
Scheme 42.
Scheme 43.
Scheme 44.
Fig. 17
Scheme 45.
Fig. 18
Scheme 46.
Scheme 47.
Fig. 19
Scheme 48.
Scheme 49.
Scheme 50.
Fig. 20
Scheme 51.
Scheme 52.
Scheme 53.
Scheme 54.
Fig. 21
Scheme 55.
Scheme 56.
Scheme 57.
Scheme 58.
Scheme 59.
Scheme 60.
Fig. 22
Scheme 61.
Fig. 23
Scheme 62.
Scheme 63.
Fig. 24
Scheme 64.
Scheme 65.
Scheme 66.
Scheme 67.
Scheme 68.
Scheme 69.
Scheme 70.
Scheme 71.
Fig. 25
Fig. 26
Scheme 72.
Scheme 73.
Scheme 74.
Fig. 27
Scheme 75.
Scheme 76.
Scheme 77.
Scheme 78.

Similar content being viewed by others

References

  1. Kumar KN, Sreeramamurthy K, Palle S et al (2010) Dithiocarbamate and DBU-promoted amide bond formation under microwave condition. Tetrahedron Lett 51:899–902. https://doi.org/10.1016/j.tetlet.2009.11.127

    Article  CAS  Google Scholar 

  2. Yang X-D, Zeng X-H, Zhao Y-H et al (2010) Silica gel-mediated amide bond formation: an environmentally benign method for liquid-phase synthesis and cytotoxic activities of amides. J Comb Chem 12:307–310. https://doi.org/10.1021/cc900135f

    Article  CAS  PubMed  Google Scholar 

  3. Sun L, Liang C, Shirazian S et al (2003) Discovery of 5-[5-Fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-Diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 46:1116–1119. https://doi.org/10.1021/jm0204183

    Article  CAS  PubMed  Google Scholar 

  4. Liu H, Xia W, Luo Y, Lu W (2010) A novel synthesis of imatinib and its intermediates. Monatsh Chem 141:907–911. https://doi.org/10.1007/s00706-010-0334-0

    Article  CAS  Google Scholar 

  5. Kumar A, Kumar N, Sharma R et al (2019) Direct conversion of carboxylic acids to various nitrogen-containing compounds in the one-pot exploiting curtius rearrangement. J Org Chem 84:11323–11334. https://doi.org/10.1021/acs.joc.9b01697

    Article  CAS  PubMed  Google Scholar 

  6. Kelly SM, Lipshutz BH (2013) Chemoselective reductions of nitroaromatics in water at room temperature. Org Lett 16:98–101. https://doi.org/10.1021/ol403079x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu X, Feng H, Huang L, Liu X (2018) Direct amidation of carboxylic acids through an active α-acyl enol ester intermediate. J Org Chem 83:7962–7969. https://doi.org/10.1021/acs.joc.8b00819

    Article  CAS  PubMed  Google Scholar 

  8. Harrold MW, Sriburi A, Matsumoto K et al (1993) The interaction of ammonium, sulfonium, and sulfide analogs of metoclopramide with the dopamine D2 receptor. J Med Chem 36:3166–3170. https://doi.org/10.1021/jm00073a017

    Article  CAS  PubMed  Google Scholar 

  9. Luo Q-L, Lv L, Li Y et al (2011) An efficient protocol for the amidation of carboxylic acids promoted by trimethyl phosphite and iodine. Eur J Org Chem 2011:6916–6922. https://doi.org/10.1002/ejoc.201101030

    Article  CAS  Google Scholar 

  10. Ojeda-Porras A, Gamba-Sánchez D (2016) Recent developments in amide synthesis using nonactivated starting materials. J Org Chem 81:11548–11555. https://doi.org/10.1021/acs.joc.6b02358

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Sun Y, Wang Z et al (2020) 2-chloroimidazolium chloride as a coupling reagent for amide bond formation. ChemistrySelect 5:4596–4600. https://doi.org/10.1002/slct.202000391

    Article  CAS  Google Scholar 

  12. Ghorpade SA, Sawant DN, Sekar N (2018) Triphenyl borate catalyzed synthesis of amides from carboxylic acids and amines. Tetrahedron 74:6954–6958. https://doi.org/10.1016/j.tet.2018.10.030

    Article  CAS  Google Scholar 

  13. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631. https://doi.org/10.1039/b701677h

    Article  CAS  PubMed  Google Scholar 

  14. Starkov P, Sheppard TD (2011) Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. Org Biomol Chem 9:1320. https://doi.org/10.1039/c0ob01069c

    Article  CAS  PubMed  Google Scholar 

  15. Todorovic M, Perrin DM (2020) Recent developments in catalytic amide bond formation. Pept Sci. https://doi.org/10.1002/pep2.24210

    Article  Google Scholar 

  16. Lundberg H, Tinnis F, Selander N, Adolfsson H (2014) Catalytic amide formation from non-activated carboxylic acids and amines. Chem Soc Rev 43:2714–2742. https://doi.org/10.1039/c3cs60345h

    Article  CAS  PubMed  Google Scholar 

  17. Sawant DN, Bagal DB, Ogawa S et al (2018) Diboron-catalyzed dehydrative amidation of aromatic carboxylic acids with amines. Org Lett 20:4397–4400. https://doi.org/10.1021/acs.orglett.8b01480

    Article  CAS  PubMed  Google Scholar 

  18. Mohy El Dine T, Erb W, Berhault Y et al (2015) Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis. J Org Chem 80:4532–4544. https://doi.org/10.1021/acs.joc.5b00378

    Article  CAS  PubMed  Google Scholar 

  19. Tam EKW, Rita LLY, Chen A (2015) 2-furanylboronic acid as an effective catalyst for the direct amidation of carboxylic acids at room temperature. Eur J Org Chem 2015:1100–1107. https://doi.org/10.1002/ejoc.201403468

    Article  CAS  Google Scholar 

  20. Yamashita R, Sakakura A, Ishihara K (2013) Primary alkylboronic acids as highly active catalysts for the dehydrative amide condensation of α-hydroxycarboxylic acids. Org Lett 15:3654–3657. https://doi.org/10.1021/ol401537f

    Article  CAS  PubMed  Google Scholar 

  21. Ishihara K (2006) Organoboronic acids and organoborinic acids as brønsted-lewis acid catalysts in organic synthesis. Boronic Acids. Wiley, Hoboken, pp 377–409. https://doi.org/10.1002/3527606548.ch10

    Book  Google Scholar 

  22. Shimada N, Hirata M, Koshizuka M et al (2019) Diboronic acid anhydrides as effective catalysts for the hydroxy-directed dehydrative amidation of carboxylic acids. Org Lett 21:4303–4308. https://doi.org/10.1021/acs.orglett.9b01484

    Article  CAS  PubMed  Google Scholar 

  23. Yun F, Cheng C, Li J et al (2016) Boric acid catalyzed direct amidation between amino-azaarenes and carboxylic acids. Synthesis 49:1583–1596. https://doi.org/10.1055/s-0036-1588126

    Article  CAS  Google Scholar 

  24. Du Y, Barber T, Lim SE et al (2019) A solid-supported arylboronic acid catalyst for direct amidation. Chem Commun 55:2916–2919. https://doi.org/10.1039/c8cc09913h

    Article  CAS  Google Scholar 

  25. Wang K, Lu Y, Ishihara K (2018) The ortho-substituent on 2,4-bis(trifluoromethyl)phenylboronic acid catalyzed dehydrative condensation between carboxylic acids and amines. Chem Commun 54:5410–5413. https://doi.org/10.1039/c8cc02558d

    Article  CAS  Google Scholar 

  26. Kumar PS, Kumar GS, Kumar RA et al (2013) Copper-catalyzed oxidative coupling of carboxylic acids with N,N-dialkylformamides: an approach to the synthesis of amides. Eur J Org Chem 2013:1218–1222. https://doi.org/10.1002/ejoc.201201544

    Article  CAS  Google Scholar 

  27. Guan L-P, Sui X, Deng X-Q et al (2010) N-palmitoylethanolamide derivatives: synthesis and studies on anticonvulsant and antidepressant activities. Med Chem Res 20:601–606. https://doi.org/10.1007/s00044-010-9357-7

    Article  CAS  Google Scholar 

  28. Castral TC, Matos AP, Monteiro JL et al (2011) Synthesis of a combinatorial library of amides and its evaluation against the fall armyworm, spodoptera frugiperda. J Agric Food Chem 59:4822–4827. https://doi.org/10.1021/jf104903t

    Article  CAS  PubMed  Google Scholar 

  29. Kato MJ, Furlan M (2007) Chemistry and evolution of the Piperaceae. Pure Appl Chem 79:529–538. https://doi.org/10.1351/pac200779040529

    Article  CAS  Google Scholar 

  30. Slee DH, Romano SJ, Yu J et al (2001) Development of potent non-carbohydrate imidazole-based small molecule selectin inhibitors with antiinflammatory activity. J Med Chem 44:2094–2107. https://doi.org/10.1021/jm000508c

    Article  CAS  PubMed  Google Scholar 

  31. Yan H, Yang H, Lu L et al (2013) Copper-catalyzed synthesis of α, β-unsaturated acylamides via direct amidation from cinnamic acids and N-substituted formamides. Tetrahedron 69:7258–7263. https://doi.org/10.1016/j.tet.2013.06.078

    Article  CAS  Google Scholar 

  32. Ding W, Mai S, Song Q (2015) Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles. Beilstein J Org Chem 11:2158–2165. https://doi.org/10.3762/bjoc.11.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie Y-X, Song R-J, Yang X-H et al (2013) Copper-catalyzed amidation of acids using formamides as the amine source. Eur J Org Chem 2013:5737–5742. https://doi.org/10.1002/ejoc.201300543

    Article  CAS  Google Scholar 

  34. Allen CL, Chhatwal AR, Williams JMJ (2012) Direct amide formation from unactivated carboxylic acids and amines. Chem Commun 48:666–668. https://doi.org/10.1039/c1cc15210f

    Article  CAS  Google Scholar 

  35. Muniyappa K, Panguluri NR, Veladi P et al (2015) A simple and greener approach for the amide bond formation employing FeCl3 as a catalyst. New J Chem 39:7746–7749. https://doi.org/10.1039/c5nj01047k

    Article  Google Scholar 

  36. Akondi SM, Gangireddy P, Pickel TC, Liebeskind LS (2018) Aerobic, diselenide-catalyzed redox dehydration: amides and peptides. Org Lett 20:538–541. https://doi.org/10.1021/acs.orglett.7b03620

    Article  CAS  PubMed  Google Scholar 

  37. Potadar SM, Mali AS, Waghmode KT, Chaturbhuj GU (2018) Repurposing n-butyl stannoic acid as highly efficient catalyst for direct amidation of carboxylic acids with amines. Tetrahedron Lett 59:4582–4586. https://doi.org/10.1016/j.tetlet.2018.11.036

    Article  CAS  Google Scholar 

  38. Larrivée-Aboussafy C, Jones BP, Price KE et al (2009) DBU catalysis of N,N′-carbonyldiimidazole-mediated amidations. Org Lett 12:324–327. https://doi.org/10.1021/ol9026599

    Article  CAS  Google Scholar 

  39. Zheng P, Lu S, Liu G (2011) An unexpected C-C cleavage reaction: new and mild access to o-OH and o-NH-Tos benzoic acids or benzoamides. Mol Divers 15:971–977. https://doi.org/10.1007/s11030-011-9329-y

    Article  CAS  PubMed  Google Scholar 

  40. Umehara A, Ueda H, Tokuyama H (2016) Condensation of carboxylic acids with non-nucleophilic N-heterocycles and anilides using Boc2O. J Org Chem 81:11444–11453. https://doi.org/10.1021/acs.joc.6b02097

    Article  CAS  PubMed  Google Scholar 

  41. Kitamura M, Kawasaki F, Ogawa K et al (2014) Role of linkers in tertiary amines that mediate or catalyze 1,3,5-triazine-based amide-forming reactions. J Org Chem 79:3709–3714. https://doi.org/10.1021/jo500376m

    Article  CAS  PubMed  Google Scholar 

  42. Mangawa SK, Bagh SK, Sharma K, Awasthi SK (2015) s-Triazene based fluorous coupling reagent for direct amide synthesis. Tetrahedron Lett 56:1960–1963. https://doi.org/10.1016/j.tetlet.2015.02.078

    Article  CAS  Google Scholar 

  43. Duangkamol C, Jaita S, Wangngae S et al (2015) An efficient mechanochemical synthesis of amides and dipeptides using 2,4,6-trichloro-1,3,5-triazine and PPh3. RSC Adv 5:52624–52628. https://doi.org/10.1039/c5ra10127a

    Article  CAS  Google Scholar 

  44. Srivastava V, Singh PK, Singh PP (2019) Visible light photoredox catalysed amidation of carboxylic acids with amines. Tetrahedron Lett 60:40–43. https://doi.org/10.1016/j.tetlet.2018.11.050

    Article  CAS  Google Scholar 

  45. Chen Z, Fu R, Chai W et al (2014) An eco-benign and highly efficient procedure for N-acylation catalyzed by heteropolyanion-based ionic liquids using carboxylic acid under solvent-free conditions. Tetrahedron 70:2237–2245. https://doi.org/10.1016/j.tet.2014.02.042

    Article  CAS  Google Scholar 

  46. Manova D, Gallier F, Tak-Tak L et al (2018) Lipase-catalyzed amidation of carboxylic acid and amines. Tetrahedron Lett 59:2086–2090. https://doi.org/10.1016/j.tetlet.2018.04.049

    Article  CAS  Google Scholar 

  47. Huy PH, Mbouhom C (2019) Formamide catalyzed activation of carboxylic acids—versatile and cost-efficient amidation and esterification. Chem Sci 10:7399–7406. https://doi.org/10.1039/c9sc02126d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tamura M, Murase D, Komura K (2015) Direct amide synthesis from equimolar amounts of carboxylic acid and amine catalyzed by mesoporous silica SBA-15. Synthesis 47:769–776. https://doi.org/10.1055/s-0034-1379966

    Article  CAS  Google Scholar 

  49. Komura K, Nakano Y, Koketsu M (2011) Mesoporous silica MCM-41 as a highly active, recoverable and reusable catalyst for direct amidation of fatty acids and long-chain amines. Green Chem 13:828. https://doi.org/10.1039/c0gc00673d

    Article  CAS  Google Scholar 

  50. Kumar M, Sharma S, Thakur K et al (2017) Montmorillonite-K10-catalyzed microwave-assisted direct amidation of unactivated carboxylic acids with amines: maintaining chiral integrity of substrates. Asian J Org Chem 6:342–346. https://doi.org/10.1002/ajoc.201600590

    Article  CAS  Google Scholar 

  51. Kunishima M, Kato D, Kimura N et al (2016) Potent triazine-based dehydrocondensing reagents substituted by an amido group. Beilstein J Org Chem 12:1897–1903. https://doi.org/10.3762/bjoc.12.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitamura M, Komine S, Yamada K, Kunishima M (2020) Trizaine-based dehydrative condensation reagents bearing carbon-substituents. Tetrahedron 76:130900. https://doi.org/10.1016/j.tet.2019.130900

    Article  CAS  Google Scholar 

  53. Khalafi-Nezhad A, Zare A, Parhami A et al (2007) Silica-supported 2,4,6-trichloro-1,3,5-triazine as an efficient reagent for direct conversion of carboxylic acids to amides under solvent-free conditions. Phosphorus Sulfur Silicon Relat Elem 182:657–666. https://doi.org/10.1080/10426500601047214

    Article  CAS  Google Scholar 

  54. Métro T-X, Bonnamour J, Reidon T et al (2012) Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recovery. Chem Commun 48:11781. https://doi.org/10.1039/c2cc36352f

    Article  CAS  Google Scholar 

  55. Maoa L, Wanga Z, Lia Y et al (2010) A convenient synthesis of amino acid arylamides utilizing methanesulfonyl chloride and N-methylimidazole. Synlett 2011:129–133. https://doi.org/10.1055/s-0030-1259099

    Article  CAS  Google Scholar 

  56. Morcillo SP, Álvarez de Cienfuegos L, Mota AJ et al (2011) Mild method for the selective esterification of carboxylic acids based on the Garegg−Samuelsson reaction. J Org Chem 76:2277–2281. https://doi.org/10.1021/jo102395c

    Article  CAS  PubMed  Google Scholar 

  57. Scaravelli F, Bacchi S, Massari L et al (2010) Efficient method to prepare diethylphosphonacetamides. Tetrahedron Lett 51:5154–5156. https://doi.org/10.1016/j.tetlet.2010.07.125

    Article  CAS  Google Scholar 

  58. Phakhodee W, Duangkamol C, Wangngae S, Pattarawarapan M (2016) Acid anhydrides and the unexpected N,N-diethylamides derived from the reaction of carboxylic acids with Ph3P/I2/Et3N. Tetrahedron Lett 57:325–328. https://doi.org/10.1016/j.tetlet.2015.12.009

    Article  CAS  Google Scholar 

  59. Phakhodee W, Wangngae S, Pattarawarapan M (2016) Metal-free amidation of carboxylic acids with tertiary amines. RSC Adv 6:60287–60290. https://doi.org/10.1039/c6ra12801g

    Article  CAS  Google Scholar 

  60. Wang S-P, Cheung CW, Ma J-A (2019) Direct amidation of carboxylic acids with nitroarenes. J Org Chem 84:13922–13934. https://doi.org/10.1021/acs.joc.9b02068

    Article  CAS  PubMed  Google Scholar 

  61. Kawagoe Y, Moriyama K, Togo H (2013) Facile preparation of amides from carboxylic acids and amines with ion-supported Ph3P. Tetrahedron 69:3971–3977. https://doi.org/10.1016/j.tet.2013.03.021

    Article  CAS  Google Scholar 

  62. Ojeda-Porras A, Hernández-Santana A, Gamba-Sánchez D (2015) Direct amidation of carboxylic acids with amines under microwave irradiation using silica gel as a solid support. Green Chem 17:3157–3163. https://doi.org/10.1039/c5gc00189g

    Article  CAS  Google Scholar 

  63. Braddock DC, Lickiss PD, Rowley BC et al (2018) Tetramethyl orthosilicate (TMOS) as a reagent for direct amidation of carboxylic acids. Org Lett 20:950–953. https://doi.org/10.1021/acs.orglett.7b03841

    Article  CAS  PubMed  Google Scholar 

  64. Collum DB, Chen S-C, Ganem B (1978) A new synthesis of amides and macrocyclic lactams. J Org Chem 43:4393–4394. https://doi.org/10.1021/jo00416a040

    Article  CAS  Google Scholar 

  65. Chung S, Uccello DP, Choi H et al (2011) Trimethylaluminium-facilitated direct amidation of carboxylic acids. Synlett 2011:2072–2074. https://doi.org/10.1055/s-0030-1260982

    Article  CAS  Google Scholar 

  66. Goodreid JD, Duspara PA, Bosch C, Batey RA (2014) Amidation reactions from the direct coupling of metal carboxylate salts with amines. J Org Chem 79:943–954. https://doi.org/10.1021/jo402374c

    Article  CAS  PubMed  Google Scholar 

  67. Gabriel CM, Keener M, Gallou F, Lipshutz BH (2015) Amide and peptide bond formation in water at room temperature. Org Lett 17:3968–3971. https://doi.org/10.1021/acs.orglett.5b01812

    Article  CAS  PubMed  Google Scholar 

  68. Fattahi N, Ayubi M, Ramazani A (2018) Amidation and esterification of carboxylic acids with amines and phenols by N,N′-diisopropylcarbodiimide: a new approach for amide and ester bond formation in water. Tetrahedron 74:4351–4356. https://doi.org/10.1016/j.tet.2018.06.064

    Article  CAS  Google Scholar 

  69. Zambroń BK, Dubbaka SR, Marković D et al (2013) Amide formation in one pot from carboxylic acids and amines via carboxyl and sulfinyl mixed anhydrides. Org Lett 15:2550–2553. https://doi.org/10.1021/ol401053y

    Article  CAS  PubMed  Google Scholar 

  70. Wang S-M, Zhao C, Zhang X, Qin H-L (2019) Clickable coupling of carboxylic acids and amines at room temperature mediated by SO2F2: a significant breakthrough for the construction of amides and peptide linkages. Org Biomol Chem 17:4087–4101. https://doi.org/10.1039/c9ob00699k

    Article  CAS  PubMed  Google Scholar 

  71. Shendage DM, Fröhlich R, Haufe G (2004) Highly efficient stereoconservative amidation and deamidation of α-amino acids. Org Lett 6:3675–3678. https://doi.org/10.1021/ol048771l

    Article  CAS  PubMed  Google Scholar 

  72. Yamada S, Abe M (2010) Selective deprotection and amidation of 2-pyridyl esters via N-methylation. Tetrahedron 66:8667–8671. https://doi.org/10.1016/j.tet.2010.09.016

    Article  CAS  Google Scholar 

  73. Ahmetaj S, Velikanje N, Grošelj U et al (2013) Parallel synthesis of 7-heteroaryl-pyrazolo[1,5-a]pyrimidine-3-carboxamides. Mol Divers 17:731–743. https://doi.org/10.1007/s11030-013-9469-3

    Article  CAS  PubMed  Google Scholar 

  74. Lanigan RM, Sheppard TD (2013) Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions. Eur J Org Chem 2013:7453–7465. https://doi.org/10.1002/ejoc.201300573

    Article  CAS  Google Scholar 

  75. Yang J, Zhao J (2017) Recent developments in peptide ligation independent of amino acid side-chain functional group. Sci China Chem 61:97–112. https://doi.org/10.1007/s11426-017-9056-5

    Article  CAS  Google Scholar 

  76. Azizi N, Aryanasab F, Saidi MR (2006) Straightforward and highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions. Org Lett 8:5275–5277. https://doi.org/10.1021/ol0620141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrood, K., Bahadorikhalili, S., Lotfi, V. et al. Catalytic and non-catalytic amidation of carboxylic acid substrates. Mol Divers 26, 1311–1344 (2022). https://doi.org/10.1007/s11030-021-10252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10252-0

Keywords

Navigation