Skip to main content

Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database


Alzheimer’s disease is the most common form of dementia, representing 60–70% of dementia cases. The enzyme acetylcholinesterase (AChE) cleaves the ester bonds in acetylcholine and plays an important role in the termination of acetylcholine activity at cholinergic synapses in various regions of the nervous system. The inhibition of acetylcholinesterase is frequently used to treat Alzheimer’s disease. In this study, a merged BindingDB and ChEMBL dataset containing molecules with reported half-maximal inhibitory concentration (IC50) values for AChE (7032 molecules) was used to build machine learning classification models for selecting potential AChE inhibitors from the SistematX dataset (8593 secondary metabolites). A total of seven fivefold models with accuracy above 80% after cross-validation were obtained using three types of molecular descriptors (VolSurf, DRAGON 5.0, and bit-based fingerprints). A total of 521 secondary metabolites (6.1%) were classified as active in this stage. Subsequently, virtual screening was performed, and 25 secondary metabolites were identified as potential inhibitors of AChE. Separately, the crystal structure of AChE in complex with (–)-galantamine was used to perform molecular docking calculations with the entire SistematX dataset. Consensus analysis of both methodologies was performed. Only eight structures achieved combined probability values above 0.5. Finally, two sesquiterpene lactones, structures 15 and 24, were predicted to be able to cross the blood–brain barrier, which was confirmed in the VolSurf+ quantitative model, revealing these two structures as the most promising secondary metabolites for AChE inhibition among the 8593 molecules tested.

Graphic abstract

A consensus analysis of classification models and molecular docking calculations identified four potential inhibitors of acetylcholinesterase from the SistematX dataset (8593 structures).

This is a preview of subscription content, access via your institution.

Fig 1
Fig 2
Fig 3.
Fig 4
Fig 5


  1. 1.

    Taylor P, Camp S, Radić Z (2009) Acetylcholinesterase. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 5–7

    Chapter  Google Scholar 

  2. 2.

    Shannon MW, Borron SW, Burn MJ (2007) Chemical weapons. Haddad and Winchester’s clinical management of poisoning and drug overdose (Fourth Edition). W.B. Saunders, Philadelphia, pp 1487–520

    Google Scholar 

  3. 3.

    Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J et al (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22):10282–6.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Rotundo RL (2003) Expression and localization of acetylcholinesterase at the neuromuscular junction. J Neurocytol 32(5):743–66.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Acetylcholinesterase BD (2007). In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–8

    Google Scholar 

  6. 6.

    Akıncıoğlu H, Gülçin İ (2020) Potent acetylcholinesterase inhibitors: potential drugs for Alzheimer’s disease. Mini Rev Med Chem 20(8):703–15.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mirjana BC, Danijela ZK, Tamara DL-P, Aleksandra MB, Vesna MV (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3):315–335.

    Article  Google Scholar 

  8. 8.

    Poddar MK, Banerjee S, Chakraborty A, Dutta D (2021) Metabolic disorder in Alzheimer’s disease. Metab Brain Dis.

    Article  PubMed  Google Scholar 

  9. 9.

    Devita M, Masina F, Mapelli D, Anselmi P, Sergi G, Coin A (2021) Acetylcholinesterase inhibitors and cognitive stimulation, combined and alone, in treating individuals with mild Alzheimer’s disease. Aging Clin Exp Res.

    Article  PubMed  Google Scholar 

  10. 10.

    Chekmarev D, Kholodovych V, Kortagere S, Welsh W, Ekins S (2009) Predicting inhibitors of acetylcholinesterase by regression and classification machine learning approaches with combinations of molecular descriptors. Pharm Res 26:2216–24.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Leuci R, Brunetti L, Poliseno V, Laghezza A, Loiodice F, Tortorella P et al (2021) Natural compounds for the prevention and treatment of cardiovascular and neurodegenerative diseases. Foods 10(1):29.

    CAS  Article  Google Scholar 

  12. 12.

    Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Calixto JB (2019) The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciências.

    Article  PubMed  Google Scholar 

  14. 14.

    Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K et al (2012) KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol 53(2):e1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Banerjee P, Erehman J, Gohlke B-O, Wilhelm T, Preissner R, Dunkel M (2015) Super Natural II—a database of natural products. Nucl Acids Res 43(D1):D935–D9.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C (2021) COCONUT online: Collection of Open Natural Products database. J Cheminformat 13(1):1–13.

    Article  Google Scholar 

  17. 17.

    Valli M, Dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I, Andricopulo AD et al (2013) Development of a natural products database from the biodiversity of Brazil. J Nat Prod 76(3):439–44.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Scotti MT, Herrera-Acevedo C, Oliveira TB, Costa RPO, Santos SYKdO, Rodrigues RP et al (2018) SistematX, an online web-based cheminformatics tool for data management of secondary metabolites. Molecules 23(1):103.

    CAS  Article  PubMed Central  Google Scholar 

  19. 19.

    Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A et al (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6):1578.

    CAS  Article  PubMed Central  Google Scholar 

  20. 20.

    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucl Acids Res 35(suppl_1):D198–D201.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Atanasova M, Yordanov N, Dimitrov I, Berkov S, Doytchinova I (2015) Molecular docking study on galantamine derivatives as cholinesterase inhibitors. Mol Informat 34(6–7):394–403.

    CAS  Article  Google Scholar 

  22. 22.

    Stavrakov G, Philipova I, Zheleva-Dimitrova D, Valkova I, Salamanova E, Konstantinov S et al (2017) Docking-based design and synthesis of galantamine–camphane hybrids as inhibitors of acetylcholinesterase. Chem Biol Drug Design 90(5):709–18.

    CAS  Article  Google Scholar 

  23. 23.

    Herrera-Acevedo C, Maia MDS, Cavalcanti ÉBVS, Coy-Barrera E, Scotti L, Scotti MT (2011) Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligandstructure-based virtual screening approach. Mol Divers.

    Article  Google Scholar 

  24. 24.

    Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Fourches D, Muratov E, Tropsha A (2015) Curation of chemogenomics data. Nature Chem Biol 11(8):535.

    CAS  Article  Google Scholar 

  26. 26.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–10.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Cruciani G, Crivori P, Carrupt PA, Testa B (2000) Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. J Mol Struct: THEOCHEM 503(1–2):17–30.

    CAS  Article  Google Scholar 

  28. 28.

    Cruciani G, Pastor M, Guba W (2000) VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 11:S29–S39.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Mauri A, Consonni V, Pavan M, Todeschini R (2006) Dragon software: an easy approach to molecular descriptor calculations. Match 56(2):237–48

    CAS  Google Scholar 

  30. 30.

    Todeschini R, Consonni V (2008) Handbook of molecular descriptors. Wiley, New York

    Google Scholar 

  31. 31.

    Scotti L, Fernandes MB, Muramatsu E, Emereciano VdP, Tavares JF, Silva MSd et al (2011) 13C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids. Braz J Pharm Sci 47(2):241–249.

    CAS  Article  Google Scholar 

  32. 32.

    Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T et al (2009) KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD Explor Newslett 11(1):26–31.

    Article  Google Scholar 

  33. 33.

    Siriseriwan W, Sinapiromsaran K (2016) The effective redistribution for imbalance dataset: relocating safe-level SMOTE with minority outcast handling. Chiang Mai J Sci 43(1):234–46

    Google Scholar 

  34. 34.

    Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct 405(2):442–451.

    CAS  Article  Google Scholar 

  36. 36.

    Scott LJ, Goa KL (2000) Galantamine. Drugs 60(5):1095–1122

    CAS  Article  Google Scholar 

  37. 37.

    Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13.

    Article  Google Scholar 

  38. 38.

    Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55(2):460–73.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Crivori P, Cruciani G, Carrupt P-A, Testa B (2000) Predicting blood—brain barrier permeation from three-dimensional molecular structure. J Med Chem 43(11):2204–16.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wong T-T, Yeh P-Y (2019) Reliable accuracy estimates from k-fold cross validation. IEEE Trans Knowl Data Eng 32(8):1586–94.

    Article  Google Scholar 

  41. 41.

    Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine. 14(4):289–300.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J Mol Gr Model 25(6):755–66.

    CAS  Article  Google Scholar 

  43. 43.

    Mues R, Timmermann BN, Ohno N, Mabry TJ (1979) 6-Methoxyflavonoids from Brickellia californica. Phytochemistry 18(8):1379–83.

    CAS  Article  Google Scholar 

  44. 44.

    Bohm BA, Stuessy TF (2001) Flavonoids of the sunflower family (Asteraceae). Springer, Vienna

    Book  Google Scholar 

  45. 45.

    Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–40.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Schmidt TJ (1999) Toxic activities of sesquiterpene lactones: structural and biochemical aspects. Curr Org Chem 3(6):577–608

    CAS  Google Scholar 

  47. 47.

    Seaman FC (1982) Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48(2):121–594.

    CAS  Article  Google Scholar 

  48. 48.

    Acevedo CH, Scotti L, Scotti MT (2018) In silico studies designed to select sesquiterpene lactones with potential antichagasic activity from an in-house asteraceae database. ChemMedChem 13(6):634–45

    CAS  Article  Google Scholar 

  49. 49.

    Pérez DJ, Zakai UI, Guo S, Guzei IA, Gómez-Sandoval Z, Razo-Hernández RS et al (2016) Synthesis and biological screening of silicon-containing ibuprofen derivatives: a study of their NF-κβ inhibitory activity, cytotoxicity, and their ability to bind IKKβ. Aust J Chem 69(6):662–71

    Article  Google Scholar 

Download references


We thank the CNPq and Capes for financial Support, Grant Numbers 309648/2019-0 and 431254/2018-4.

Author information



Corresponding author

Correspondence to Marcus Tullius Scotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 8771 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrera-Acevedo, C., Perdomo-Madrigal, C., Herrera-Acevedo, K. et al. Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database. Mol Divers 25, 1553–1568 (2021).

Download citation


  • Natural products
  • Machine learning
  • Acetylcholinesterase
  • Ligand-based virtual screening
  • Machine learning
  • SistematX database