Skip to main content
Log in

In vitro antimicrobial evaluation and in silico studies of coumarin derivatives tagged with pyrano-pyridine and pyrano-pyrimidine moieties as DNA gyrase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Several coumarin-containing substitute nitrogen heterocycles have recently received considerable importance due to their diverse pharmacological properties. One-pot and rapid synthesis of coumarin derivatives was achieved via reactions of acetyl-coumarin with p-chloro-benzaldehyde and malononitrile to provide compound 2-containing cyano-amine using conventional heating. Compound 2 was condensed with different carbon electrophiles triethyl orthoformate, phenyl isocyanate, carbon disulfide, benzoyl chloride, and acetyl chloride that afforded the corresponding chromene derivatives 3–17. All the newly synthesized compounds were characterized by elemental and spectroscopic evidences. All of the synthesized compounds were tested for antimicrobial activity against S. Pneumoniae, S. Epidermidis, S. Aureus, and E. coli as Gram + ve Bacteria, K. Pneumoniae, S. Paratyphi as Gram -ve Bacteria, P. Italicum, A. Fumigatus representative for Fungi. The preliminary screening results showed that most of the compounds had moderate to high activity against all tested organisms. The most potent four compounds were subjected to further investigation against E. Coli DNA gyrase and topoisomerase IV inhibitory activity, and the results showed that all of these derivatives inhibit DNA gyrase and thus cell division. Also, in silico studies were done for the most active compounds which showed good results.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang WM (1994) Type II DNA topoisomerase genes. In: August JT, Anders MW, Murad F, Coyle JT, Liu L (eds) DNA topoisomerases: biochemistry and molecular biology, vol 29. Academic Press, London, pp 201–225

    Chapter  Google Scholar 

  2. Scheffler RJ, Colmer S, Tyman H, Demain AL, Gullo VP (2013) Antimicrobials, drug discovery and genome mining. Appl Microbiol Biotechnol 97:969–978. https://doi.org/10.1007/s00253-012-4609-8

    Article  CAS  PubMed  Google Scholar 

  3. Leo E, Gould KA, Su Pan X, Capranico G, Sanderson MR, Palumbo M, Fisher LM (2005) Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site. J Biolog Chem 280:14252–14263

    Article  CAS  Google Scholar 

  4. Bellon S, Parsons JD, Wei Y, Hayakawa K, Swenson LL, Charifson PS, Lippke JA, Aldape R, Gross CH (2004) Crystal structures of Escherichia coli topoisomerase IV ParE Subunit (24 and 43 Kilodaltons): a Single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrob Agents Chemother 48:1856–1864. https://doi.org/10.1128/AAC.48.5.1856-1864.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alt S, Mitchenall LA, Maxwell A, Heide L (2011) Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. J Antimicrob Chemother 66(9):2061–2069. https://doi.org/10.1093/jac/dkr247

    Article  CAS  PubMed  Google Scholar 

  6. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70(1):369–413. https://doi.org/10.1146/annurev.biochem.70.1.369

    Article  CAS  PubMed  Google Scholar 

  7. Reus DR, Fashauer P, Mroch PJ, Ul-Haq I, Mo Koo B, Pohlein A, Gross CA, Daniel R, Brantl S, Stulke J (2019) Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucl Acids Res 47:5231–5242. https://doi.org/10.1093/nar/gkz260

    Article  CAS  Google Scholar 

  8. Jamier V, Marut W, Valente S, Chereau C, Chouzenoux S, Nicco C, Lemarechal H, Weill B, Kirsch G, Jacob C, Batteux F (2014) Chalcone-coumarin derivatives as potential anti-cancer drugs: an in vitro and in vivo investigation. Anticancer Agents Med Chem 14(7):963–974. https://doi.org/10.2174/1871520613666131224124445

    Article  PubMed  Google Scholar 

  9. Thomas V, Giles D, Basavarajaswamy GPM, Patel A (2017) Coumarin derivatives as anti-inflammatory and anticancer agents. Anticancer Agents Med Chem 17(3):415–423. https://doi.org/10.2174/1871520616666160902094739

    Article  CAS  PubMed  Google Scholar 

  10. El-Sawy ER, Ebaid MS, Abo-Salem HM, Al-Sehemi AG, Mandour AH (2014) Synthesis, anti-inflammatory, analgesic and anticonvulsant activities of some new 4,6-dimethoxy-5-(heterocycles)benzofuran starting from naturally occurring visnagin. Arabian J Chem 7:914–923. https://doi.org/10.1016/j.arabjc.2012.12.041

    Article  CAS  Google Scholar 

  11. Kadhum AAH, Al-Amiery AA, Musa AY, Mohamad AB (2011) The antioxidant activity of new coumarin derivatives. Int J Mol Sci 12:5747–5761. https://doi.org/10.3390/ijms12095747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raza A, Saeed A, Ibrar A, Muddassar M, Khan AA, Iqbal J (2012) Pharmacological evaluation and docking studies of 3-thiadiazolyl- and thioxo-1,2,4-triazolylcoumarin derivatives as cholinesterase inhibitors. Int Schol Res Netw ISRN Pharmacol 2012:11. https://doi.org/10.5402/2012/707932

    Article  CAS  Google Scholar 

  13. Curir P, Galeotti F, Dolci M, Barile E, Lanzotti V (2007) Pavietin, a coumarin from aesculus pavia with antifungal activity. J Nat Prod 70(10):1668–1671. https://doi.org/10.1021/np070295v

    Article  CAS  PubMed  Google Scholar 

  14. Lanoot B, Vancanneyt M, Cleenwerck I, Wang L, Li W, Liu Z, Swings J (2002) The search for synonyms among streptomycetes by using SDS-PAGE of wholecell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. Int J Syst Evol Microbiol 52:823–829. https://doi.org/10.1099/ijs.0.02008-0

    Article  CAS  PubMed  Google Scholar 

  15. Singh LR, Avula SR, Raj S, Srivastava A, Palnati GR, Tripathi CKM, Pasupuleti M, Sashidhara KV (2017) Coumarin–benzimidazole hybrids as a potent antimicrobial agent: synthesis and biological elevation. J Antibiot 70:1–8. https://doi.org/10.1038/ja.2017.70

    Article  CAS  Google Scholar 

  16. Schmutz E, Mühlenweg A, Li SM, Heide L (2003) Resistance genes of aminocoumarin producers: two type II topoisomerase genes confer resistance against coumermycin a1 and clorobiocin. Antimicrob Agents Chemother 47(3):869–877. https://doi.org/10.1128/AAC.47.3.869-877.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morrison A, Cozzarelli NR (1979) Site-specific cleavage of DNA by E. coli DNA gyrase. Cell 17(1):175–184. https://doi.org/10.1016/0092-8674(79)90305-2

    Article  CAS  PubMed  Google Scholar 

  18. Singh V, Katiyar D (2017) Synthesis, antimicrobial, cytotoxic and E. coli DNA gyrase inhibitory activities of coumarinyl amino alcohols. Bioorg. Chem. 71:120–127. https://doi.org/10.1016/j.bioorg.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  19. Naik NS, Shastri LA, Joshi SD, Dixit SR, Chougala BM, Samundeeswari S, Holiyachi M, Shaikh F, Madar J, Kulkarni R, Sunagar V (2017) 3,4-Dihydropyrimidinone-coumarin analogues as a new class of selective agent against S. aureus: synthesis, biological evaluation and molecular modelling study. Bioorg Med Chem 25(4):1413–1422. https://doi.org/10.1016/j.bmc.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  20. Metwally NH, Abdallah SO, Mohsen MMA (2020) Design, green one-pot synthesis and molecular docking study of novel N, N-bis(cyanoacetyl)hydrazines and bis-coumarins as effective inhibitors of DNA gyrase and topoisomerase IV. Bioorg Chem 97:103672. https://doi.org/10.1016/j.bioorg.2020.103672

    Article  CAS  PubMed  Google Scholar 

  21. El Shehry MF, Ghorab MM, Abbas SY, Fayed EA, Shedid SA, Ammar YA (2018) Quinoline derivatives bearing pyrazole moiety: synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur J Med Chem 143:1463–1473. https://doi.org/10.1016/j.ejmech.2017.10.046

    Article  CAS  PubMed  Google Scholar 

  22. El-Kalyoubi SA, Fayed EA, Abdel-Razek AS (2017) One pot synthesis, antimicrobial and antioxidant activities of fused uracils: pyrimidodiazepines, lumazines, triazolouracil and xanthines. Chem Cent J 11(1):1–13. https://doi.org/10.1186/s13065-017-0294-0

    Article  CAS  Google Scholar 

  23. Ammar YA, Salem MA, Fayed EA, Helal MH, El-Gaby MSA, Thabet HK (2017) Naproxen derivatives: synthesis, reactions, and biological applications. Synth Commun. https://doi.org/10.1080/00397911.2017.1328066

    Article  Google Scholar 

  24. Fayed EA, Sabour R, Harras MF, Mehany ABM (2019) Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents. Med Chem Res 28(8):1284–1297. https://doi.org/10.1007/s00044-019-02373-x

    Article  CAS  Google Scholar 

  25. Elkalyoubi S, Fayed E (2016) Synthesis and evaluation of antitumour activities of novel fused tri-And tetracyclic uracil derivatives. J Chem Res 40(12):2016. https://doi.org/10.3184/174751916X14798125870610

    Article  CAS  Google Scholar 

  26. Ammar YA, Farag AA, Ali AM, Hessein SA, Askar AA, Fayed EA, Elsisi DM, Ragab A (2020) Antimicrobial evaluation of thiadiazino and thiazolo quinoxaline hybrids as potential DNA gyrase inhibitors; design, synthesis, characterization and morphological studies. Bioorgan Chem. https://doi.org/10.1016/j.bioorg.2020.103841

    Article  Google Scholar 

  27. Fayed EA, Eissa SI, Bayoumi AH, Gohar NA, Mehany ABM, Ammar YA (2019) Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol Diver 23(1):165–181. https://doi.org/10.1007/s11030-018-9865-9

    Article  CAS  Google Scholar 

  28. Ammar YA, Fayed EA, Bayoumi AH (2017) New chalcones bearing isatin scaffold: synthesis, molecular modeling and biological evaluation as anticancer agents. Res Chem Intermed. https://doi.org/10.1007/s11164-017-3019-z

    Article  Google Scholar 

  29. Fayed EA, Ammar YA, Ragab A, Gohar NA, Mehany ABM, Farrag AM (2020) In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorgan Chem. https://doi.org/10.1016/j.bioorg.2020.103951

    Article  Google Scholar 

  30. Ammar YA, Fayed EA, Bayoumi AH, Saleh MA, El-Araby ME (2015) Design and synthesis of pyridine-amide based compounds appended naproxen moiety as anti-microbial and anti-inflammatory agents. Am J PharmTech Res 5:245–73

    CAS  Google Scholar 

  31. Mousa BA, Khalifa MM, Fayed EA, Said MM, Ahmed HI (2017) Synthesis, anxiolytic and tranquilizing activity of some new 1, 4-diazepine derivatives. Am J PharmTech Res 7(2), 2017. http://www.ajptr.com/.

  32. Fayed EA, Ahmed HY (2016) Synthesis, characterization and pharmacological evaluation of some new 1,4-diazepine derivatives as anticancer agents. Der Pharma Chemica 8(13):77–90

    CAS  Google Scholar 

  33. Ammar YA, Fayed EA, Bayoumi AH, Saleh MA (2016) Synthesis and biological evaluation of new amides pro-drugs containing naproxen moiety as anti-inflammatory and antimicrobial agents. Der Pharma Chemica 8(1):495–508

    Google Scholar 

  34. AbdelFattah BA, Khalifa MMA, El-Sehrawi H, Fayed E, Bayoumi A (2011) Synthesis and anxiolytic activity of some novel 5-oxo-1, 4-oxazepine derivatives. Lett Drug Des Discov 8(4):330–338. https://doi.org/10.2174/157018011794839448

    Article  CAS  Google Scholar 

  35. El-Sherbiny GM, Ai E, Im E, Askar AA (2017) Antibacterial potential with molecular docking study against multi-drug resistant bacteria and mycobacterium tuberculosis of streptomycin produced by streptomyces atroverins, strain askar-SH50A, antibacterial potential with molecular. J Chem Pharm Res 9:189–208

    CAS  Google Scholar 

  36. Sherman JCN (2004) Microbiology, laboratory manual. Pearson Education, Inc., New Delhi

    Google Scholar 

  37. Baur AW, Kirby WM, Sherris JC, Truck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  Google Scholar 

  38. Bi F, Song D, Zhang N, Liu Z, Gu X, Hu C, Cai X, Venter H, Ma S (2018) Design, synthesis and structure-based optimization of novel isoxazole-containing benzamide derivatives as FtsZ modulators. Eur J Med Chem 159:90–103. https://doi.org/10.1016/j.ejmech.2018.09.053

    Article  CAS  PubMed  Google Scholar 

  39. Sun N, Li M, Cai S, Li Y, Chen C, Zheng Y, Li X, Fang Z, Lv H, Lu Y (2019) Biochemical and biophysical research communications antibacterial evaluation and mode of action study of bimq, a novel bacterial cell division inhibitor. Biochem Biophys Res Commun 514:1224–1230. https://doi.org/10.1016/j.bbrc.2019.05.086

    Article  CAS  PubMed  Google Scholar 

  40. Al-Blewi F, Rezki N, Adjet A, Qutb Uddin H, Al-Sodies S, Messali M, Aouad MR, Bardaweel S (2019) A profile of the in vitro anti-tumor activity and in silico ADME predictions of novel benzothiazole amide-functionalized imidazolium ionic liquids. Int J Mol Sci. https://doi.org/10.3390/ijms20122865

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169–409X(96), 00423–1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Adv Drug Deliv Rev 46(1):3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  42. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem A 102(21):3762–3772. https://doi.org/10.1021/jp980230o

    Article  CAS  Google Scholar 

  43. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  44. Egan WJ, Lauri G (2002) Prediction of intestinal permeability. Adv Drug Deliv Rev 54(3):273–289. https://doi.org/10.1016/s0169-409x(02)00004-2

    Article  CAS  PubMed  Google Scholar 

  45. Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44(12):1841–1846. https://doi.org/10.1021/jm015507e

    Article  CAS  PubMed  Google Scholar 

  46. Mohi El-Deen EM, Abd El-Meguid EA, Karam EA, Nossier ES, Ahmed MF (2020) Synthesis and biological evaluation of new pyridothienopyrimidine derivatives as antibacterial agents and escherichia coli topoisomerase II inhibitors. Antibiotics 9(10):695. https://doi.org/10.3390/antibiotics9100695

    Article  CAS  PubMed Central  Google Scholar 

  47. Lafitte D, Lamour V, Tsvetkov PO, Makarov AA, Klich M, Deprez P, Moras D, Briand C, Gilli R (2002) DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5’-methyl group of the noviose. Biochemistry 41:7217–7223. https://doi.org/10.1021/bi0159837

    Article  CAS  PubMed  Google Scholar 

  48. Othman IM, Gad-Elkareem MA, El-Naggar M, Nossier ES, Amr AE (2019) Novel phthalimide based analogues: design, synthesis, biological evaluation, and molecular docking studies. J Enzyme Inhib Med Chem 34(1):1259–1270. https://doi.org/10.1080/14756366.2019.1637861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siddiqi N, Arshad F, Khan S (2009) Synthesis of some new coumarin incorporated thiazolyl symicarbazones as anticonvulsants. Pharm Soci 66:161–167

    Google Scholar 

  50. Sudjana AN, D’Orazio C, Ryan V, Rasool N, Ng J, Islam N, Riley TV, Hammer KA (2009) Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int J Antimicrob Agents 33(5):461–463. https://doi.org/10.1016/j.ijantimicag.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  51. Sangeetha G, Thangavelu R, Usha RS, Muthukumar A (2013) Antimicrobial activity of medicinal plants and induction of defense related compounds in banana fruits cv. Robusta against crown rot pathogens. Biol Control 64:16–25. https://doi.org/10.1016/j.biocontrol.2011.12.013

    Article  Google Scholar 

  52. Eissa SI, Farrag AM, Abbas SY, El Shehry MF, Ragab A, Fayed EA, Ammar YA (2021) Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorgan Chem. https://doi.org/10.1016/j.bioorg.2021.104803

    Article  Google Scholar 

  53. Yahia E, Mohammad H, Abdelghany TM, Seleem MN, Mayhoub AS (2017) Phenylthiazole antibiotics: a metabolism-guided approach to overcome short duration of action. Eur J Med Chem 126:604–613. https://doi.org/10.1016/j.ejmech.2016.11.042

    Article  CAS  PubMed  Google Scholar 

  54. Alt S, Mitchenall LA, Maxwell A, Heide L (2011) Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. J Antimicrob Chemother 66:2061–2069. https://doi.org/10.1093/jac/dkr247

    Article  CAS  PubMed  Google Scholar 

  55. Hashem HE, Amr AE, Nossier ES, Elsayed EA, Azmy EM (2020) Synthesis, antimicrobial activity and molecular docking of novel thiourea derivatives tagged with thiadiazole, imidazole and triazine moieties as potential dna gyrase and topoisomerase iv inhibitors. Molecules 25(12):2766. https://doi.org/10.3390/molecules25122766

    Article  CAS  PubMed Central  Google Scholar 

  56. Daina A, Michielin O, Zoete V (2017) Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fayed EA, Bayoumi AH, Saleh AS, Ezz Al-Arab EM, Ammar YA (2021) In vivo and in vitro anti-inflammatory, antipyretic and ulcerogenic activities of pyridone and chromenopyridone derivatives, physicochemical and pharmacokinetic studies. Bioorgan Chem 109:104742. https://doi.org/10.1016/j.bioorg.2021.104742

    Article  CAS  Google Scholar 

  58. Fayed EA, Ezz Eldin RR, Mehany A, Bayoumi AH, Ammar YA (2021) Isatin-Schiff’s base and chalcone hybrids as chemically apoptotic inducers and EGFR inhibitors; design, synthesis, anti-proliferative activities and in silico evaluation. J Mol Struct 1234:130159. https://doi.org/10.1016/j.molstruc.2021.130159

    Article  CAS  Google Scholar 

  59. Fayed EA, Ammar YA, Saleh MA, Bayoumi AH, Belald A, Mehany ABM, Ragab A (2021) Design, synthesis, antiproliferative evaluation, and molecular docking study of new quinoxaline derivatives as apoptotic inducers and EGFR inhibitors. J Mol Struct 1236:130317. https://doi.org/10.1016/j.molstruc.2021.130317

    Article  CAS  Google Scholar 

Download references

Acknowedgements

The authors would like to thanks the Research Development Unit and the Central Laboratory at the Faculty of Pharmacy for Girls, Al-Azhar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman A. Fayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23723 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayed, E.A., Nosseir, E.S., Atef, A. et al. In vitro antimicrobial evaluation and in silico studies of coumarin derivatives tagged with pyrano-pyridine and pyrano-pyrimidine moieties as DNA gyrase inhibitors. Mol Divers 26, 341–363 (2022). https://doi.org/10.1007/s11030-021-10224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10224-4

Keywords

Navigation