Skip to main content
Log in

A review on various aspects of organic synthesis using Comins’ reagent

  • Short review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Recently, researchers have shown great interest in compounds such as triflate and enotriflate that are synthesized by Comins reagent. For the above-mentioned reason, we planned to review the works related to organic synthesis using Comins reagent. So this review includes a whole new investigation of the Comins reagent which is used for stereoselective conversion of α–keto ester, enolate to enol triflate of lactone and vinyl triflate to methyl ketone. Comins reagent plays an important role in regioselectivity such as transformations of ketone or dienolates into vinyl triflates and it has a major application in highly selective oxidation in an easy and environmentally friendly manner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34

Similar content being viewed by others

References

  1. Jieping Z, Bigot A, Tran Huu Dau ME (1997) 4-Nitrophenyltriflate as a new triflating agent. Tetrahedron Lett. 38:1181–1182. https://doi.org/10.1016/S0040-4039(97)00024-5

    Article  Google Scholar 

  2. Comins DL, Dehghani A, Foti CJ, Joseph SP (2003) Pyridine‐Derived Triflating Reagents: N‐(2‐Pyridyl)‐Triflimide and N‐(5‐Chloro‐2‐Pyridyl) Triflimide. Organic Synth. 74: 77–87. https://doi.org/10.15227/orgsyn.074.0077

  3. Dounay AB, Hatanaka K, Kodanko JJ, Oestreich M, Overman LE, Pfeifer LA, Weiss MM (2003) Catalytic asymmetric synthesis of quaternary carbons bearing two aryl substituents. Enantioselective synthesis of 3-alkyl-3-aryl oxindoles by catalytic asymmetric intramolecular heck reactions. J Am Chem Soc. 125(20):6261–6271. https://doi.org/10.1021/ja034525d

    Article  CAS  PubMed  Google Scholar 

  4. Ceccarelli SM, Piarulli U, Telser J, Gennari C (2001) A carbonylative cross-coupling strategy to the total synthesis of the sarcodictyins: preliminary studies and synthesis of a cyclization precursor. Tetrahedron Lett 42(42):7421–7425. https://doi.org/10.1016/s0040-4039(01)01608-2

    Article  CAS  Google Scholar 

  5. Richardson TI, Dodge JA, Wang Y, Durbin JD, Krishnan V, Norman BH (2007) Benzopyrans as selective estrogen receptor β agonists (SERBAs). Part 5: Combined A-and C-ring structure–activity relationship studies. Bioorg Med Chem Lett 17(20):5563–5566. https://doi.org/10.1016/j.bmcl.2007.08.009

    Article  CAS  PubMed  Google Scholar 

  6. Davies HM, Dai X, Long MS (2006) Combined C− H activation/cope rearrangement as a strategic reaction in organic synthesis: Total synthesis of (−)-colombiasin A and (−)-elisapterosin B. J Am Chem Soc 128(7):2485–2490. https://doi.org/10.1002/chin.200626161

    Article  CAS  PubMed  Google Scholar 

  7. Ha JD, Lee D, Cha JK (1997) Total Synthesis of Clavepictines A and B. Cross-Coupling of an Acylenamino Triflate and Cyclization of a δ-Aminoallene. J Org Chem. 62(14):4550–4551. https://doi.org/10.1021/jo970788c

    Article  CAS  Google Scholar 

  8. Lepage O, Deslongchamps P (2003) New strategy for convergent steroid synthesis. J Org Chem 68(6):2183–2186. https://doi.org/10.1002/chin.200326200

    Article  CAS  PubMed  Google Scholar 

  9. Lai KW, Paquette LA (2008) Stereocontrolled synthesis of the sterically encumbered F ring of lancifodilactone G. Org Lett 10(11):2115–2118. https://doi.org/10.1021/ol800419v

    Article  CAS  PubMed  Google Scholar 

  10. Luker T, Hiemstra H, Speckamp WN (1997) Synthesis and further reactivity of functionalized lactam-derived enol triflates. J Org Chem 62(23):8131–8140. https://doi.org/10.1021/jo971192s

    Article  CAS  PubMed  Google Scholar 

  11. Molander GA, St. Jean DJ, Haas J (2004) Toward a general route to the eunicellin diterpenes: the asymmetric total synthesis of deacetoxyalcyonin acetate. J Am Chem Soc 126(6):1642–1643. https://doi.org/10.1021/ja0398464

    Article  CAS  PubMed  Google Scholar 

  12. Han JC, Liu LZ, Chang YY, Yue GZ, Guo J, Zhou LY, Li CC, Yang Z (2013) Asymmetric Total Synthesis of Caribenol A via an Intramolecular Diels-Alder Reaction. J Org Chem 78(11):5492–5504. https://doi.org/10.1021/jo4006156

    Article  CAS  PubMed  Google Scholar 

  13. Quiñones-Reyes G, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A (2019) Synthetic Haptens and Monoclonal Antibodies to the Cyanotoxin Anatoxin-a. Angew Chem Int 58(27):9134–9139. https://doi.org/10.1002/anie.201904002

    Article  CAS  Google Scholar 

  14. Deng M, Yao Y, Li X, Li N, Zhang X, Liang G (2019) Rapid construction of the ABCE tetracyclic tertiary amine skeleton in Daphenylline enabled by an amine–borane complexation strategy. Org Lett 21(9):3290–3294. https://doi.org/10.1021/acs.orglett.9b01021

    Article  CAS  PubMed  Google Scholar 

  15. Fazakerley NJ, Procter DJ (2014) Synthesis and synthetic chemistry of pleuromutilin. Tetrahedron 70(39):6911–6930. https://doi.org/10.1016/j.tet.2014.05.092

    Article  CAS  Google Scholar 

  16. Rinner U, Hudlicky T (2011) Synthesis of morphine alkaloids and derivatives Alkaloid Synthesis. Springer, Berlin, Heidelberg

    Google Scholar 

  17. Wender PA, Hegde SG, Hubbard RD, Zhang L (2002) Total synthesis of (−)-laulimalide. J Am Chem Soc 124(18):4956–4957. https://doi.org/10.1021/ja0258428

    Article  CAS  PubMed  Google Scholar 

  18. Scheerer JR, Lawrence JF, Wang GC, Evans DA (2007) Asymmetric synthesis of salvinorin A, a potent κ opioid receptor agonist. J Am Chem Soc 129(29):8968–8969. https://doi.org/10.1002/chin.200749186

    Article  CAS  PubMed  Google Scholar 

  19. Schmalzbauer B, Menche D (2015) Concise Synthesis of the Tricyclic Core of Salimabromide. Org Lett 17(12):2956–2959. https://doi.org/10.1021/acs.orglett.5b01231

    Article  CAS  PubMed  Google Scholar 

  20. Houghton TJ, Choi S, Rawal VH (2001) Efficient assembly of the phomactin core via two different macrocyclization protocols. Org Lett 3(23):3615–3617. https://doi.org/10.1021/ol0163833

    Article  CAS  PubMed  Google Scholar 

  21. Zorn N, Lett R (2006) Enol triflates derived from the Wieland-Miescher ketone and an analog bearing an angular acetoxymethyl group: their highly regioselective synthesis and Stille coupling with vinyl (tributyl) tin. Tetrahedron Lett 47(26):4331–4335. https://doi.org/10.1016/j.tetlet.2006.03.185

    Article  CAS  Google Scholar 

  22. Toyooka N, Zhou D, Nemoto H, Garraffo HM, Spande TF, Daly JW (2007) Flexible synthetic routes to poison-frog alkaloids of the 5, 8-disubstituted indolizidine-class I: synthesis of common lactam chiral building blocks and application to the synthesis of (-)-203A,(-)-205A, and (-)-219F. Beilstein J Org Chem 3(1):29. https://doi.org/10.1186/1860-5397-3-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Helm MD, Sucunza D, Da Silva M, Helliwell M, Procter DJ (2009) SmI2-mediated dialdehyde cyclization cascades. Tetrahedron Lett 50(26):3224–3226. https://doi.org/10.1016/j.tetlet.2009.02.025

    Article  CAS  Google Scholar 

  24. Toyooka N, Fukutome A, Shinoda H, Nemoto H (2004) Stereodivergent synthesis of the 2,3,5,6-tetrasubstituted piperidine ring system: an application to the synthesis of alkaloids 223A and 205B from poison frogs. Tetrahedron 60(29):6197–6216. https://doi.org/10.1016/j.tet.2004.05.039

    Article  CAS  Google Scholar 

  25. Marshall JA, Van Devender EA (2001) Synthesis of (−)-deoxypukalide, the enantiomer of a degradation product of the furanocembranolide pukalide. J Org Chem 66(24):8037–8041. https://doi.org/10.1021/jo016048s

    Article  CAS  PubMed  Google Scholar 

  26. Nicolaou KC, Li A, Edmonds DJ, Tria GS, Ellery SP (2009) Total synthesis of platensimycin and related natural products. J Am Chem Soc 131(46):16905–16918. https://doi.org/10.1021/ja9068003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bio MM, Leighton JL (2003) An Approach to the Synthesis of the Phomoidrides. J Org Chem 68(5):1693–1700. https://doi.org/10.1021/jo026478y

    Article  CAS  PubMed  Google Scholar 

  28. Kaneko H, Takahashi S, Kogure N, Kitajima M, Takayama H (2019) Asymmetric total synthesis of fawcettimine-type Lycopodium alkaloid, lycopoclavamine-A. J Org Chem 84(9):5645–5654. https://doi.org/10.1021/acs.joc.9b00586

    Article  CAS  PubMed  Google Scholar 

  29. Dounay AB, Overman LE, Wrobleski AD (2005) Sequential catalytic asymmetric Heck− iminium ion cyclization: Enantioselective total synthesis of the Strychnos alkaloid minfiensine. J Am Chem Soc 127(29):10186–10187. https://doi.org/10.1002/chin.200548201

    Article  CAS  PubMed  Google Scholar 

  30. Nakura R, Inoue K, Okano K, Mori A (2019) Practical Synthesis of Precursors of Cyclohexyne and 1, 2-Cyclohexadiene. Synth 51(07):1561–1564. https://doi.org/10.1055/s-0037-1610356

    Article  CAS  Google Scholar 

  31. Inoue K, Nakura R, Okano K (2018) Mori A (2018) One-Pot Synthesis of Silylated Enol Triflates from Silyl Enol Ethers for Cyclohexynes and 1, 2-Cyclohexadienes. European J Org Chem 25:3343–3347. https://doi.org/10.1002/ejoc.201800353

    Article  CAS  Google Scholar 

  32. Duquette DC, Jensen T, Stoltz BM (2018) Progress towards the total synthesis of hamigerans C and D: a direct approach to an elaborated 6–7-5 carbocyclic core. J antibiot 71(2):263–267. https://doi.org/10.1038/ja.2017.96

    Article  CAS  Google Scholar 

  33. Sakata K, Wang Y, Urabe D, Inoue M (2018) Synthesis of the tetracyclic structure of batrachotoxin enabled by bridgehead radical coupling and Pd/Ni-promoted Ullmann reaction. Org Lett 20(1):130–133. https://doi.org/10.1021/acs.orglett.7b03482

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Mohana Roopan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi Priya, D., Lakshman, C. & Roopan, S.M. A review on various aspects of organic synthesis using Comins’ reagent. Mol Divers 26, 691–716 (2022). https://doi.org/10.1007/s11030-020-10175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10175-2

Keywords

Navigation