Skip to main content
Log in

Photooxidation of 2,3-dihydroquinazolin-4(1H)-ones: retention or elimination of 2-substitution

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of mono and disubstituted 2,3-dihydroquinazolin-4(1H)-ones (DHQZs) were synthesized and the electronic and steric effects of the C2- and N3-substitutions on the retention or elimination of the C2-substitution by exposing them to the ultraviolet light were investigated. Electron transfer from photo-excited dihydroquinazolinones to chloroform solvent is proposed, in which both lone pairs on the N1- and N3-atoms can be involved in this process. The extent of the N1- and N3-atoms contributions in this electron-transfer process and also the retention or elimination of the C2-substitutions are dependent on the nature and steric hindrance of both C2- and N3-substitutions. The experimental results are supported by the computational studies.

Graphic abstract

Photoinduced electron-transfer reaction of a series of mono and disubstituted 2,3- dihydroquinazolin-4(1H)-ones was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Vijaychand A, Manjula SN, Bharath EN, Divya B (2011) Medicinal and biological significance of quinazoline a highly important scaffold for drug discovery: a review. Int J Pharma Bio Sci 2:780–809

    CAS  Google Scholar 

  2. Mahato AK, Srivastava B, Nithya S (2011) Chemistry structure activity relationship and biological activity of quinazoline-4 (3H)-one derivatives. Med Chem 2:1–6

    Google Scholar 

  3. Badalato M, Aiello F, Neamati N (2018) 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv 8:20894–20921. https://doi.org/10.1039/c8ra02827c

    Article  CAS  Google Scholar 

  4. Asif M (2014) Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int J Med Chem. https://doi.org/10.1155/2014/395637

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abdalgane HA, Mohammed HH, Askar FW (2019) Synthesis and biological evaluation studies of some quinazolinone derivatives as antimicrobial and antioxidant agents. J Pharm Sci. Res 11:54–57

    CAS  Google Scholar 

  6. Abdel Gawad NM, Georgey HH, Youssef RM, El-Sayed NA (2010) Synthesis and antitumor activity of some 2,3-disubstituted quinazolin-4(3H)-ones and 4,6-disubstituted 1,2,3,4-tetrahydroquinazolin-2H-ones. Eur J Med Chem 45:6058–6067. https://doi.org/10.1016/j.ejmech.20

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Zhang M-M, Wang X-S (2017) Structurally diversified synthesis of 2,3-dihydroquinazolin-4-(1H)-ones from 2-aminobenzamides and 1,2-dicarbonyl compounds in ionic liquids catalyzed by iodine. Res Chem Intermed 43:2985–3005. https://doi.org/10.1007/s11164-016-2807-1

    Article  CAS  Google Scholar 

  8. Zhang Z-H, Lü H-Y, Yang S-H, Gao J-W (2010) Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalysed by magnetic Fe3O4 nanoparticles in water. J Comb Chem 12:643–646. https://doi.org/10.1021/cc100047j

    Article  CAS  PubMed  Google Scholar 

  9. Sharma M, Pandey S, Chauhan K, Sharma D, Kumar B, Chauhan PM (2012) Cyanuric chloride catalyzed mild protocol for synthesis of biologically active dihydro/spiro quinazolinones and quinazolinone-glycoconjugates. J Org Chem 77:929–937. https://doi.org/10.1021/jo2020856

    Article  CAS  PubMed  Google Scholar 

  10. Takacs A, Fodor A, Nemeth J, Hell Z (2014) Zeolite-catalyzed method for the preparation of 2,3-dihydroquiazolin-4(1H0-ones. Synth Commun 44:2269–2275. https://doi.org/10.1080/00397911.2014.894525

    Article  CAS  Google Scholar 

  11. Krishnan S, Ganguly S, Veerasamy R, Jan B (2011) Synthesis, antiviral and cytotoxic investigation of 2-phenyl-3-substituted vquinazolin-4(3H)-ones. Eur Rev Med Pharmacol Sci 15:673–681

    CAS  PubMed  Google Scholar 

  12. Georgey H, Abdel-Gawad N, Abbas S (2008) Synthesis and anticonvulsant activity of some quinazolin-4-(3H)-one derivatives. Molecules 13:2557–2569. https://doi.org/10.3390/molecules13102557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ding MW, Zeng GP, Wu TJ (2000) A facile synthesis of 2-mino-3H-quinazolin-4-ones with tandem aza-Wittig reaction. Synth Commun 30:1599–1604. https://doi.org/10.1080/00397910008087195

    Article  CAS  Google Scholar 

  14. Panneerselvam P, Ahmad BR, Reddy DRS, Kumar NR (2009) Synthesis and anti-microbial screening of some Schiff bases of 3-amino-6,8-dibromo-2-phenylquinazolin-4(3H)-ones. Eur J Med Chem 44:2328–2333. https://doi.org/10.1016/j.ejmech.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh SK, Nagarajan R (2016) Total synthesis of penipanoid C, 2-(4-hydroxybenzyl)quinazolin4(3H)-one and NU1025. Tetrahedron Lett 57:4277–4279. https://doi.org/10.1016/j.tetlet.2016.08.018

    Article  CAS  Google Scholar 

  16. Peng Y-Y, Zeng Y, Qiu G, Cai L, Pike VW (2010) A convenient one-pot procedure for the synthesis of 2-arylquinazolines using active MnO2 as oxidant. J Heterocyclic Chem 47:1240–1245. https://doi.org/10.1002/jhet.444

    Article  CAS  Google Scholar 

  17. Cabrera-Rivera FA, Ortíz-Nava C, Escalante J, Hernández-Pérez JM, Hô M (2012) Pothotoinduced elimination in 2,3-dihydro-2-tert-butyl-3-benzyl-4(1H)-quinazolinone: theoretical calculations and radical trapping using TEMPO derivatives. Synlett 23:1057–1063. https://doi.org/10.1055/s-0031-1290492

    Article  CAS  Google Scholar 

  18. Memarian HR, Kalantari M (2017) Steric and electronic substitution effects on the thermal oxidation of 5-carboethoxy-2-oxo-1,2,3,4-tetrahydropyridines. J Iran Chem Soc 14:143-155 and references cited therein. https://doi.org/10.1007/s13738-016-0966-z

  19. Memarian HR, Minakar R (2019) Thermal electron-transfer induced oxidation of 2-pyrazolines. Mol Div 23:953–964. https://doi.org/10.1007/s11030-019-09922-x

    Article  CAS  Google Scholar 

  20. Memarian HR, Sanchooli E (2017) Photo-dehydrogenation of 4,6-diaryl-2-oxo-1,2,3,4-tetrahydropyrimidines. J Iran Chem Soc 14:1335-1346 and references cited therein. https://doi.org/10.1007/s13738-017-1084-2

  21. Soltani M, Memarian HR, Sabzyan H (2018) Spectroscopic studies of aryl substituted 1-phenyl-2-pyrazolines: steric and electronic substitution effects. J Mol Struc 1173:903-917 and references cited therein. https://doi.org/10.1016/j.molstruc.2018.07.052

  22. Soltani M, Minakar R, Memarian HR, Sabzyan H (2019) Cyclic voltammetric study of 3,5-diaryl-1-phenyl-2-pyrazolines. J Phys Chem C 123:2820-2830 and references cited therein. https://doi.org/10.1021/acs.jpca.9b00642

  23. Memarian HR, Kalantari M, Amiri Rudbari H, Sabzyan H, Bruno G (2017) DFT and structural studies of 2-oxo-1,2,3,4-tetrahydropyridines. Comp Theo Chem 1099:75–86. https://doi.org/10.1016/j.comptc.2016.11.018

    Article  CAS  Google Scholar 

  24. Memarian HR, Ebrahimi S (2013) Light induced oxidation of 2,3-dihydroquinazolin-4(1H)-ones. J Photochem Photobiol A: Chem. 271:8–15. https://doi.org/10.1016/j.photochem.2013.07.008

    Article  CAS  Google Scholar 

  25. Memarian HR, Ghahremani S (2017) Electron transfer-induced oxidation of 2,3-dihydroqinazolin-4(1H)-ones. Z Naturforsch 72:403–408. https://doi.org/10.1007/s00706-014-1221-x

    Article  CAS  Google Scholar 

  26. Memarian HR, Ebrahimi S (2014) Theoretical and voltammetric studies on the electron detachment process of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh Chem 145:1545–1554. https://doi.org/10.1007/s00706-014-1221-x

    Article  CAS  Google Scholar 

  27. Memarian HR, Ebrahimi S, Amiri Rudbari H, Sabzyan H, Nardo VM (2016) Inter- and interamolecular interactions in 2,3-dihydroquinazolin-4(1H)-ones: molecular structure and conformational analysis. J Iran Chem Soc 13:1395–1404. https://doi.org/10.1007/s13738-016-0854-6

    Article  CAS  Google Scholar 

  28. Memarian HR, Soleymani M, Sabzyan H (2012) Light-induced dehydrogenation of 2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxamides. J Iran Chem Soc 9:805–813. https://doi.org/10.1007/s13738-012-0097-0

    Article  CAS  Google Scholar 

  29. Soltani M, Memarian HR, Sabzyan H (2020) Photooxidation of 3,5-diaryl-1-phenyl-2-pyrazolines: experimental and computational studies. J Photochem Photobiol A: Chem 389:112285. https://doi.org/10.1016/j.photochem.2019.112285

    Article  CAS  Google Scholar 

  30. Jin M-Z, Yang L, Wu L-M, Liu Y-C, Liu Z-L (1998) Novel photo-induced aromatization of Hantzsch 1,4-dihydropyridines. Chem Commun. https://doi.org/10.1039/a807093h

    Article  Google Scholar 

  31. Chen L, Farahat MS, Gan H, Farid S, Whitten DG (1995) Photoinduced electron transfer double fragmentation: an oxygen-mediated radical chain process in the cofragmentation of aminopinacol donors with organic halides. J Am Chem Soc 117:6398–6399. https://doi.org/10.1021/ja00128a046

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are thankful to the Research Council and Office of Graduate Studies of the University of Isfahan for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Memarian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Prof. Dr. Dietrich Dӧpp, Universität Duisburg, Germany, who passed away on September 25, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memarian, H.R., Aghalar, R. Photooxidation of 2,3-dihydroquinazolin-4(1H)-ones: retention or elimination of 2-substitution. Mol Divers 26, 191–203 (2022). https://doi.org/10.1007/s11030-020-10174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10174-3

Keywords

Navigation