Skip to main content
Log in

New organosulfur metallic compounds as potent drugs: synthesis, molecular modeling, spectral, antimicrobial, drug likeness and DFT analysis

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

During the present investigation, two new sulfonamide-based Schiff base ligands, 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L1) and 4-{[1-(2-hydroxyphenyl)ethylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L2), have been synthesized and coordinated with the transition metals (V, Fe, Co, Ni, Cu and Zn). The ligands were characterized by their physical (color, melting point, yield and solubility), spectral (UV–Vis, FT-IR, LC–MS, 1H NMR and 13C NMR) and elemental data. The structures of the metal complexes (1)–(12) were evaluated through their physical (magnetic and conductance), spectral (UV–Vis, FT-IR and LC–MS) and elemental data. The molecular geometries of ligands and their selected metal complexes were optimized at their ground state energies by B3LYP level of density functional theory (DFT) utilizing 6-311+G (d, p) and LanL2DZ basis set. The first principle study has been discussed for the electronic properties, the molecular electrostatic possibilities as well as the quantum chemical identifiers. An obvious transition of intramolecular charge had been ascertained from the occupied to the unoccupied molecular orbitals. The UV–Vis analysis was performed through time-dependent density functional theory (TD-DFT) by CAM-B3LYP/6-311+G (d, p) function. The in vitro antimicrobial activity was studied against two fungal (Aspergillus niger and Aspergillus flavus) and four bacterial (Staphylococcus aureus, Klebsiela pneumoniae, Escherichia coli and Bacillus subtilis) species. The antioxidant activity was executed as antiradical DPPH scavenging activity (%), total iron reducing power (%) and total phenolic contents (mg GAE g−1). Additionally, enzyme inhibition activity was done against four enzymes (Protease, α-Amylase, Acetylcholinesterase and Butyrylcholinesterase). All the synthetic products exhibited significant bioactivity which were found to enhance upon chelation due to phenomenon of charge transfer from metal to ligand.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sumrra SH, Hassan AU, Imran M, Khalid M, Mughal EU, Zafar MN, Tahir MN, Raza MA, Braga AA (2020) Synthesis, characterization, and biological screening of metal complexes of novel sulfonamide derivatives: experimental and theoretical analysis of sulfonamide crystal. Appl Organomet Chem 34:e5623. https://doi.org/10.1002/aoc.5623

    Article  CAS  Google Scholar 

  2. Kumar SV, Scottwell SO, Waugh E, McAdam CJ, Hanton LR, Brooks HJ, Crowley JD (2016) Antimicrobial properties of tris (homoleptic) ruthenium(II) 2-Pyridyl-1,2,3-triazole “click” complexes against pathogenic bacteria, including methicillin-resistant staphylococcus aureus (MRSA). Inorg Chem 55:9767–9777. https://doi.org/10.1021/acs.inorgchem.6b01574

    Article  CAS  PubMed  Google Scholar 

  3. Yufanyi DM, Abbo HS, Titinchi SJJ, Neville T (2020) Platinum(II) and Ruthenium(II) complexes in medicine: antimycobacterial and anti HIV activities. Coord Chem Rev 414:213285. https://doi.org/10.1016/j.ccr.2020.213285

    Article  CAS  Google Scholar 

  4. Singh P, Yadav P, Mishra A, Awasthi SK (2020) Green and mechanochemical one pot multicomponent synthesis of bioactive 2-amino-4H-benzo[b]pyrans via highly efficient amine functionalized SiO2Fe3O4 nanoparticles. ACS Omega 5:4223–4232. https://doi.org/10.1021/acsomega.9b04117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu D, Zhang M, Du W, Hu L, Li F, Tian X, Wang A, Zhang Q, Zhang Z, Wu J, Tian Y (2018) A series of Zn(II) terpyridine based nitrate complexes as two photon fluorescent probe for identifying apoptotic and living cells via subcellular immigration. Inorg Chem 57:7676–7683. https://doi.org/10.1021/acs.inorgchem.8b00620

    Article  CAS  PubMed  Google Scholar 

  6. Erxleben A (2018) Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorg Chim Acta 472:40–57. https://doi.org/10.1016/j.ica.2017.06.060

    Article  CAS  Google Scholar 

  7. Chaudhary NK, Mishra P (2018) Bioactivity of some divalent M(II) complexes of penicillin based Schiff base ligand: synthesis, spectroscopic characterization, and thermal study. J Saudi Chem Soc 22:601–613. https://doi.org/10.1016/j.jscs.2017.10.003

    Article  CAS  Google Scholar 

  8. Hossain MS, Roy PK, Ali R, Zakaria CM, Kudrat-E-Zahan M (2017) Selected pharmacological applications of 1st row transition metal complexes: a review. Clin Med Res 6:177–191. https://doi.org/10.11648/j.cmr.20170606.13

    Article  Google Scholar 

  9. Bou-Abdallah F, Giffune TR (2016) The thermodynamics of protein interactions with essential first row transition metals. Biochim Biophys Acta (BBA) Gen Subj 1860:879–891. https://doi.org/10.1016/j.bbagen.2015.11.005

    Article  CAS  Google Scholar 

  10. Ebrahimi H, Hadi JS, Al-Ansari HS (2013) A new series of Schiff bases derived from sulfa drugs and indole-3-carboxaldehyde: synthesis, characterization, spectral and DFT computational studies. J Mol Struct 1039:37–45. https://doi.org/10.1016/j.molstruc.2013.01.063

    Article  CAS  Google Scholar 

  11. Capasso C, Supuran CT (2014) Sulfa and trimethoprim-like drugs-antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem 29:379–387. https://doi.org/10.3109/14756366.2013.787422

    Article  CAS  PubMed  Google Scholar 

  12. Abdel-Hafez SH, Gobouri AA, Alshanbari NA, El-Rab SMFG (2018) Synthesis of novel vitamin E containing sulfa drug derivatives and study their antibacterial activity. Med Chem Res 27:2341–2352. https://doi.org/10.1007/s00044-018-2240-7

    Article  CAS  Google Scholar 

  13. Saad FA, El-Ghamry HA, Kassem MA, Khedr AM (2019) Nano synthesis, biological efficiency and DNA binding affinity of new homo-binuclear metal complexes with sulfa azo dye based ligand for further pharmaceutical applications. J Inorg Organomet Polym Mater 29:1337–1348. https://doi.org/10.1007/s10904-019-01098-z

    Article  CAS  Google Scholar 

  14. Prajapat G, Gupta R, Bhojak N (2019) microwave assisted synthesis, structural characterization, thermal analysis and antibacterial studies of Fe(III), Ni(II) and Cu(II) complexes of sulfanilamide. Orient J Chem 35:308–317. https://doi.org/10.13005/ojc/350137

    Article  CAS  Google Scholar 

  15. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372. https://doi.org/10.1080/00268976.2017.1333644

    Article  CAS  Google Scholar 

  16. Usman M, Arjmand F, Ahmad M, Khan MS, Ahmad I, Tabassum S (2016) A comparative analyses of bioactive Cu(II) complexes using Hirshfeld surface and density functional theory (DFT) methods: DNA binding studies, cleavage and antibiofilm activities. Inorg Chim Acta 453:193–201. https://doi.org/10.1016/j.ica.2016.08.011

    Article  CAS  Google Scholar 

  17. Asath RM, Premkumar R, Mathavan T, Benial AMF (2017) Structural, spectroscopic and molecular docking studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: a potential bioactive agent. Spectrochim Acta A 175:51–60. https://doi.org/10.1016/j.saa.2016.11.037

    Article  CAS  Google Scholar 

  18. Sumrra SH, Kausar S, Raza MA, Zubair M, Zafar MN, Nadeem MA, Mughal EU, Chohan ZH, Mushtaq F, Rashid U (2018) Metal based triazole compounds: their synthesis, computational, antioxidant, enzyme inhibition and antimicrobial properties. J Mol Struct 1168:202–211. https://doi.org/10.1016/j.molstruc.2018.05.036

    Article  CAS  Google Scholar 

  19. Manachou M, Gouid Z, Almi Z, Belaidi S, Boughdiri S, Hochlaf M (2020) Pyrazolo [1,5-a][1,3,5] triazin-2-thioxo-4-ones derivatives as thymidine phosphorylase inhibitors: structure, drug-like calculations and quantitative structure–activity relationships (QSAR) modeling. J Mol Struct 1199:127027. https://doi.org/10.1016/j.molstruc.2019.127027

    Article  CAS  Google Scholar 

  20. Sumrra SH, Atif AH, Zafar MN, Khalid M, Tahir MN, Nazar MF, Nadeem MA, Braga AA (2018) Synthesis, crystal structure, spectral and DFT studies of potent isatin derived metal complexes. J Mol Struct 1166:110–120. https://doi.org/10.1016/j.molstruc.2018.03.132

    Article  CAS  Google Scholar 

  21. Alper P, Erkisa M, Genckal HM, Sahin S, Ulukaya E, Ari F (2019) Synthesis, characterization, anticancer and antioxidant activity of new nickel (II) and copper (II) flavonoid complexes. J Mol Struct 1196:783–792. https://doi.org/10.1016/j.molstruc.2019.07.009

    Article  CAS  Google Scholar 

  22. Sumrra SH, Mushtaq F, Khalid M, Raza MA, Nazar MF, Ali B, Braga AA (2018) Synthesis, spectral characterization and computed optical analysis of potent triazole based compounds. Spectrochim Acta A 190:197–207. https://doi.org/10.1016/j.saa.2017.09.019

    Article  CAS  Google Scholar 

  23. Boussadia A, Beghidja A, Gali L, Beghidja C, Elhabiri M, Rabu P, Rogez G (2020) Coordination properties of two new Schiff-base phenoxy-carboxylates and comparative study of their antioxidant activities. Inorganica Chim Acta. https://doi.org/10.1016/j.ica.2020.119656

    Article  Google Scholar 

  24. Hassan AU, Sumrra SH, Raza MA, Zubair M, Zafar MN, Mughal EU, Nazar MF, Irfan A, Imran M, Assir MA (2020) Design, facile synthesis, spectroscopic characterization, and medicinal probing of metal-based new sulfonamide drugs: a theoretical and spectral study. Appl Organomet Chem. https://doi.org/10.1002/aoc.6054

    Article  Google Scholar 

  25. Chohan ZH, Shad HA, Supuran CT (2012) Synthesis, characterization and biological studies of sulfonamide Schiff’s bases and some of their metal derivatives. J Enzyme Inhib Med Chem 27:58–68. https://doi.org/10.3109/14756366.2011.574623

    Article  CAS  PubMed  Google Scholar 

  26. Ceruso M, Carta F, Osman SM, Alothman Z, Monti SM, Supuran CT (2015) Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg Med Chem 23:4181–4187. https://doi.org/10.1016/j.bmc.2015.06.050

    Article  CAS  PubMed  Google Scholar 

  27. Dayan S, Cetin A, Arslan NB, Özpozan NK, Özdemir N, Dayan O (2015) Palladium(II) complexes bearing bidentate pyridyl-sulfonamide ligands: synthesis and catalytic applications. Polyhedron 85:748–753. https://doi.org/10.1016/j.poly.2014.09.042

    Article  CAS  Google Scholar 

  28. Alafeefy AM, Abdel-Aziz HA, Vullo D, Al-Tamimi AM, Awaad AS, Mohamed MA, Capasso C, Supuran CT (2015) Inhibition of human carbonic anhydrase isozymes I, II, IX and XII with a new series of sulfonamides incorporating aroylhydrazone[1,2,4] triazolo [3,4-b][1,3,4] thiadiazinyl-or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3 (2H)-yl moieties. J Enzyme Inhib Med Chem 30:52–56. https://doi.org/10.3109/14756366.2013.877897

    Article  CAS  PubMed  Google Scholar 

  29. Quintana C, Silva G, Klahn AH, Artigas V, Fuentealba M, Biot C, Halloum I, Kremer L, Novoa N, Arancibia R (2017) New cyrhetrenyl and ferrocenyl sulfonamides: synthesis, characterization, X-ray crystallography, theoretical study and anti-Mycobacterium tuberculosis activity. Polyhedron 134:166–172. https://doi.org/10.1016/j.poly.2017.06.015

    Article  CAS  Google Scholar 

  30. Sahu N, Das D, Mondal S, Roy S, Dutta P, Sepay N, Gupta S, López-Torres E, Sinha C (2016) The structural characterization and biological activity of sulfamethoxazolyl-azo-p-cresol, its copper(II) complex and their theoretical studies. New J Chem 40:5019–5031. https://doi.org/10.1039/C5NJ02983J

    Article  CAS  Google Scholar 

  31. Kamel MM, Ali HI, Anwar MM et al (2010) Synthesis, antitumor activity and molecular docking study of novel Sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur J Med Chem 45:572–580. https://doi.org/10.1016/j.ejmech.2009.10.044

    Article  CAS  PubMed  Google Scholar 

  32. Buldurun K, Turan N, Savci A, Çolak N (2019) Synthesis, structural characterization and biological activities of metal(II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru(II) complexes transfer hydrogenation. J Saudi Chem Soc 23:205–214. https://doi.org/10.1016/j.jscs.2018.06.002

    Article  CAS  Google Scholar 

  33. Maurya RC, Sutradhar D, Martin MH, Roy S, Chourasia J, Sharma AK, Vishwakarma P (2015) Oxovanadium(IV) complexes of medicinal relevance: Synthesis, characterization, and 3D-molecular modeling and analysis of some oxovanadium (IV) complexes in O, N donor coordination matrix of sulfa drug Schiff bases derived from a 2-pyrazolin-5-one derivatives. Arab J Chem 8:78–92. https://doi.org/10.1016/j.arabjc.2011.01.009

    Article  CAS  Google Scholar 

  34. Chen F, Askari MS, Ottenwaelder X (2013) Synthesis of a sulfonamide Schiff base ligand and its Cu(II), Fe(III) and Co(III) complexes. Inorganica Chim Acta 407:25–30. https://doi.org/10.1016/j.ica.2013.07.017

    Article  CAS  Google Scholar 

  35. Sedighipoor M, Kianfar AH, Sabzalian MR, Abyar F (2018) Synthesis and characterization of new unsymmetrical Schiff base Zn(II) and Co(II) complexes and study of their interactions with bovin serum albumin and DNA by spectroscopic techniques. Spectrochim Acta A 198:38–50. https://doi.org/10.1016/j.saa.2018.02.050

    Article  CAS  Google Scholar 

  36. Kataria R, Sethuraman K, Vashisht D, Vashisht A, Mehta SK, Gupta A (2019) Colorimetric detection of mercury ions based on anti-aggregation of gold nanoparticles using 3, 5-dimethyl-1-thiocarboxamidepyrazole. Microchem J 148:299–305. https://doi.org/10.1016/j.microc.2019.04.068

    Article  CAS  Google Scholar 

  37. Üstün E, Düşünceli SD, Özdemir I (2019) Theoretical analysis of frontier orbitals, electronic transitions, and global reactivity descriptors of M(CO)4L2 type metal carbonyl complexes: a DFT/TDDFT study. Struct Chem 30:769–775. https://doi.org/10.1007/s11224-018-1231-0

    Article  CAS  Google Scholar 

  38. Mary SJ, Siddique MU, Pradhan S, Jayaprakash V, James C (2020) Quantum chemical insight into Molecular Structure, NBO analysis of the hydrogen bonded interactions, spectroscopic (FT-IR, FT-Raman), drug likeness and molecular docking of the novel anti COVID-19 molecule 2-[(4, 6-diaminopyrimidin-2-yl) sulfanyl]-N-(4- fluorophenyl)acetamide-dimer. Spectrochim Acta A. https://doi.org/10.1016/j.saa.2020.118825

    Article  Google Scholar 

  39. Holden ZC, Rana B, Herbert JM (2019) Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic potential: theory, implementation, and application to ab initio molecular dynamics simulation of the aqueous electron. J Chem Phys 150:144115. https://doi.org/10.1063/1.5089673

    Article  CAS  PubMed  Google Scholar 

  40. Abdel-Rahman LH, Abu-Dief AM, Basha M, Hassan Abdel-Mawgoud AA (2017) Three novel Ni(II), VO(IV) and Cr(III) mononuclear complexes encompassing potentially tridentate imine ligand: synthesis, structural characterization, DNA interaction, antimicrobial evaluation and anticancer activity. Appl Organomet Chem 31:e3750. https://doi.org/10.1002/aoc.3750

    Article  CAS  Google Scholar 

  41. Ahmed M, Qadir MA, Shafiq MI, Muddassar M, Samra ZQ, Hameed A (2019) Synthesis, characterization, biological activities and molecular modeling of Schiff bases of benzene sulfonamides bearing curcumin scaffold. Arab J Chem 12:41–53. https://doi.org/10.1016/j.arabjc.2016.11.017

    Article  CAS  Google Scholar 

  42. Chohan ZH, Shad HA (2012) Metal-based new sulfonamides: design, synthesis, antibacterial, antifungal, and cytotoxic properties. J Enzyme Inhib Med Chem 27:403–412. https://doi.org/10.3109/14756366.2011.593515

    Article  CAS  PubMed  Google Scholar 

  43. Alenzi FQ, Altamimi MA, Kujan O, Tarakji B, Tamimi W, Bagader O, Al-Shangiti A, Talohi AN, Alenezy AK, Al-Swailmi F, Alenizi D (2013) Antioxidant properties of Nigella sativa. J Mol Genet Med 7:1–5. https://doi.org/10.4172/1747-0862.1000077

    Article  CAS  Google Scholar 

  44. Deswal S, Tittal RK, Vikas DG, Lal K, Kumar A (2020) 5-Fluoro-1H-indole-2,3-dione-triazoles-synthesis, biological activity, molecular docking, and DFT study. J Mol Struct 1209:127982. https://doi.org/10.1016/j.molstruc.2020.127982

    Article  CAS  Google Scholar 

Download references

Funding

This research work had the financial support from the Higher Education Commission (HEC), Islamabad, Pakistan in the form of their NRPU Project # 7800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Hussain Sumrra.

Ethics declarations

Conflict of interest

There are no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.U., Sumrra, S.H., Zafar, M.N. et al. New organosulfur metallic compounds as potent drugs: synthesis, molecular modeling, spectral, antimicrobial, drug likeness and DFT analysis. Mol Divers 26, 51–72 (2022). https://doi.org/10.1007/s11030-020-10157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10157-4

Keywords

Navigation