Skip to main content
Log in

Facile synthesis of pyrrolo[2,1-a]isoquinolines by domino reaction of 1-aroyl-3,4-dihydroisoquinolines with conjugated ketones, nitroalkenes and nitriles

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A convenient protocol for the synthesis of 5,6-dihydropyrrolo[2,1-a]isoquinolines with various electron-withdrawing substituents at C-2 atom is described. This approach is based on the two-component domino reaction of 1-aroyl-3,4-dihydroisoquinolines with α,β-unsaturated ketones, nitroalkenes and acrylonitrile. Depending on the selected substrates, the reaction was performed in TFE under reflux or under microwave irradiation. Only for the two examples, a transition metal catalyst was used.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Boekelheide V (1960) Chapter 11 The Erythrina alkaloids. Alkaloids Chem Physiol 7:201–227. https://doi.org/10.1016/S1876-0813(08)60005-6

  2. Hill RK (1967) Chapter 12 The Erythrina alkaloids. Alkaloids Chem Physiol 9:483–515. https://doi.org/10.1016/S1876-0813(08)60208-0

  3. Dyke SF, Quessy SN (1981) Chapter 1 Erythrina and related alkaloids. Alkaloids Chem Physiol 18:1–98. https://doi.org/10.1016/S1876-0813(08)60236-5

  4. Chawala AS, Jackson AH (1984) Erthrina and related alkaloids. Nat Prod Rep 1:371–373. https://doi.org/10.1016/S1876-0813(08)60208-0

    Article  Google Scholar 

  5. Mohammed MMD, Ibrahim NA, Awad NE, Matloub AA, Mohamed-Ali AG, Barakat EE, Mohamed AE, Colla PL (2012) Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan. Nat Prod Res 26:1565–1575. https://doi.org/10.1080/14786419.2011.573791

    Article  CAS  PubMed  Google Scholar 

  6. Decker MW, Anderson DJ, Brioni JD, Donnelly-Roberts DL, Kang CH, O'Neil AB, Piattoni-Kaplan M, Swanson S, Sullivan JP (1995) Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 280:79–89. https://doi.org/10.1016/0014-2999(95)00191-M

    Article  CAS  PubMed  Google Scholar 

  7. Garín-Aguilar ME, Luna JE, Soto-Hernández M, Valencia del Toro G, Vázquez MM (2000) Effect of crude extracts of Erythrina americana Mill. on aggressive behavior in rats. J Ethnopharmacol 69:189–196. https://doi.org/10.1016/S0378-8741(99)00121-X

    Article  PubMed  Google Scholar 

  8. Garcia-Mateos R, Garín Aguilar ME, Soto-Hernández M, Martínez-Vázquez M (2000) Effect of beta-erythroidine and beta-dihydroerythroidine from Erythrina americana on rats aggressive behaviour. Pharm Pharmacol Lett 10:34–37 https://www.researchgate.net/publication/293212601_Effect_of_b-erythroidine_and_b-dihydroerythroidine_from_Erythrina_americana_on_rats_aggressive_behaviour. Accessed 3 June 2020

  9. Onusic GM, Nogueira RL, Pereira AM, Flausino OA Jr, Viana MB (2003) Effects of chronic treatment with a water–alcohol extract from Erythrina mulungu on anxiety-related responses in rats. Biol Pharm Bull 26:1538–1542. https://doi.org/10.1248/bpb.26.1538

    Article  CAS  PubMed  Google Scholar 

  10. Flausino OA Jr, Pereira AM, Bolzani VS, Nunes-de-Souza RL (2007) Effects of Erythrinian alkaloids isolated from Erythrina mulungu (Papilionaceae) in mice submitted to animal models of anxiety. Biol Pharm Bull 30:375–378. https://doi.org/10.1248/bpb.30.375

    Article  CAS  PubMed  Google Scholar 

  11. Santos Rosa D, Faggion SA, Gavin AS, Anderson de Souza M, Fachim HA, Ferreira dos Santos W, Soares Pereira AM, Siqueira Cunha AO, Beleboni RO (2012) Erysothrine, an alkaloid extracted from flowers of Erythrina mulungu Mart. ex Benth: evaluating its anticonvulsant and anxiolytic potential. Epilepsy Behav 23:205–212. https://doi.org/10.1016/j.yebeh.2012.01.003

    Article  PubMed  Google Scholar 

  12. Dias SA, Neves AEO, Ferraz ABF, Picada JN, Pereira P (2013) Neuropharmacological and genotoxic evaluation of ethanol extract from Erythrina falcata leaves, a plant used in Brazilian folk medicine. Rev Bras Farmacogn 23:335–341. https://doi.org/10.1590/S0102-695X2013005000015

    Article  Google Scholar 

  13. Bonilla JA, Santa Maria AM, Toloza G, Espinoza MP, Avalos JN, Nuñez MJ, Moreno M (2014) Sedative, anxiolytic and toxicological effect of an aqueous extract from Erythrina berteroana (pito) flowers in mice. Rev Cuba Plantas Med 19:383–398. https://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/91/106. Accessed 3 June 2020

  14. Carvalho ACCS, Almeida DS, Melo MG, Cavalcanti SC, Marçal RM (2009) Evidence of the mechanism of action of Erythrina velutina Willd (Fabaceae) leaves aqueous extract. J Ethnopharmacol 122:374–378. https://doi.org/10.1016/j.jep.2008.12.019

    Article  PubMed  Google Scholar 

  15. Iturriaga-Vásquez P, Carbone A, García-Beltrán O, Livingstone PD, Biggin PC, Cassels BK, Wonnacott S, Zapata-Torres G, Bermudez I (2010) Molecular determinants for competitive inhibition of α4β2 nicotinic acetylcholine receptors. Mol Pharmacol 78:366–375. https://doi.org/10.1124/mol.110.065490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Setti-Perdigao P, Serrano MA, Flausino OA Jr, Bolzani VS, Guimarães MZ, Castro NG (2013) Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells. PLoS ONE 8:e82726. https://doi.org/10.1371/journal.pone.0082726

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Q, Tu G, Zhao Y, Cheng T (2002) Novel bioactive isoquinoline alkaloids from Carduus crispus. Tetrahedron 58:6795–6798. https://doi.org/10.1016/S0040-4020(02)00792-5

    Article  CAS  Google Scholar 

  18. Xie WD, Li PL, Jia ZJ (2005) A new flavone glycoside and other constituents from Carduus crispus. Pharmazie 60:233–236. https://www.ingentaconnect.com/contentone/govi/pharmaz/2005/00000060/00000003/art00016. Accessed 3 June 2020

  19. Coya E, Sotomayor N, Lete E (2014) Intramolecular direct arylation and Heck reactions in the formation of medium-sized rings: selective synthesis of fused indolizine, pyrroloazepine and pyrroloazocine systems. Adv Synth Catal 356:1853–1865. https://doi.org/10.1002/adsc.201400075

    Article  CAS  Google Scholar 

  20. Azcargorta AR, Coya E, Barbolla I, Lete E, Sotomayor N (2016) Generation of tertiary and quaternary stereocentres through palladium-catalysed intramolecular Heck-type reactions for the stereocontrolled synthesis of pyrrolo[1,2-b]isoquinolines. Eur J Org Chem 2016:2054–2063. https://doi.org/10.1002/ejoc.201600082

    Article  CAS  Google Scholar 

  21. Olsen CA, Parera N, Albericio F, Álvareza M (2005) 5,6-Dihydropyrrolo[2,1-b]isoquinolines as scaffolds for synthesis of lamellarin analogues. Tetrahedron Lett 46:2041–2044. https://doi.org/10.1016/j.tetlet.2005.01.145

    Article  CAS  Google Scholar 

  22. Chávez-Santos RM, Reyes-Gutiérrez PE, Torres-Ochoa RO, Ramírez-Apan MT (2017) Martínez R (2017) 5,6-Dihydropyrrolo[2,1-a]isoquinolines as alternative of new drugs with cytotoxic activity. Chem Pharm Bull 65:973–981. https://doi.org/10.1248/cpb.c17-00409

    Article  Google Scholar 

  23. Jebalia K, Planchata A, Amri H, Mathé-Allainmat M, Lebreton J (2016) A short and efficient approach to pyrrolo[2,1-a]isoquinoline and pyrrolo[2,1-a]benzazepine derivatives. Synthesis 48:1502–1517. https://doi.org/10.1055/s-0035-1561398

    Article  CAS  Google Scholar 

  24. Selvakumar J, Mangalaraj S, Achari KMM, Mukund K, Ramanathan CR (2017) Triflic acid mediated cyclization of unsymmetrical N-phenethyl- and N-(3-indolylethyl)succinimides: regio- and diastereoselective synthesis of substituted pyrroloisoquinolinones and indolizino­indolones. Synthesis 49:1053–1064. https://doi.org/10.1055/s-0036-1588639

    Article  CAS  Google Scholar 

  25. Stepakov AV, Ledovskaya MS, Boitsov VM, Molchanov AP, Kostikov RR, Gurzhiy VV, Starova GL (2012) Synthesis of isoxazolopyrroloisoquinolines by intramolecular cyclizations of 5-(2-arylethyl)-6-hydroxytetrahydro-4H-pyrrolo[3,4-d]isoxazol-4-ones. Tetrahedron Lett 53:5414–5417. https://doi.org/10.1016/j.tetlet.2012.07.114

    Article  CAS  Google Scholar 

  26. Lenshmidt LV, Ledovskaya MS, Larina AG, Filatov AS, Molchanov AP, Kostikov RR, Stepakov AV (2018) Synthesis of isoxazolopyrrolo[2,1-a]isoquinoline, isoxazolo[5',4': 1,2]indolizino[8,7-b]indole, and isoxazolo[5,4-a]thieno[2,3-g]indolizine derivatives by intramolecular cyclization of hydroxylactams constituting a fragment of the pyrroloisoxazole system. Russ J Org Chem 54:112–125. https://doi.org/10.1134/S1070428018010116

    Article  CAS  Google Scholar 

  27. Basavaiah D, Lingaiah B, Reddy GC, Sahu BH (2016) Baylis-Hillman acetates in synthesis: copper(I)/tert -butyl hydroperoxide promoted one-pot oxidative intramolecular cyclization protocol for the preparation of pyrrole-fused compounds and the formal synthesis of (±)-Crispine A. Eur J Org Chem 2016:2398–2403. https://doi.org/10.1002/ejoc.201600384

    Article  CAS  Google Scholar 

  28. Tang X, Yang MC, Ye C, Liu L, Zhou HL, Jiang XJ, You XL, Han B, Cui HL (2017) Catalyst-free [3+2] cyclization of imines and Morita–Baylis–Hillman carbonates: a general route to tetrahydropyrrolo[2,1-a]isoquinolines and dihydropyrrolo[2,1-a]isoquinolines. Org Chem Front 4:2128–2133. https://doi.org/10.1039/C7QO00492C

    Article  CAS  Google Scholar 

  29. Cui HL, Jiang L, Liu S (2019) Direct synthesis of dihydropyrrolo[2,1-a]isoquinolines through FeCl3 promoted oxidative aromatization. Adv Synth Cat 361:4772–4780. https://doi.org/10.1002/adsc.201900756

    Article  CAS  Google Scholar 

  30. Agarwal S, Kataeva O, Schmidt U, Knölker HJ (2013) Silver(i)-promoted oxidative cyclisation to pyrrolo[2,1-a]isoquinolines and application to the synthesis of (±)-crispine A. RSC Adv 3:1089–1096. https://doi.org/10.1039/C2RA22823H

    Article  CAS  Google Scholar 

  31. Punirun T, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M (2018) Oxidative difluoromethylation of tetrahydroisoquinolines using TMSCF2SPh: synthesis of fluorinated pyrrolo[2,1-a]isoquinolines and benzo[a]quinolizidines. J Org Chem 83:765–782. https://doi.org/10.1021/acs.joc.7b02783

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Xu Q, Liao W (2014) Metal-free intramolecular carbocyanation of alkenes: catalytic stereoselective construction of pyrrolo[2,1-a]isoquinolines with multiple substituents. Chem Eur J 20:13876–13880. https://doi.org/10.1002/chem.201404217

    Article  CAS  PubMed  Google Scholar 

  33. Qin TY, Cheng L, Ho-Chol J, Zhang SXA, Liao WW (2016) Facile synthesis of multifunctional pyrrolo[2,1-a]isoquinolin-3(2H)-ones via sulfa-Michael-triggered one-pot reactions. Synthesis 48:357–364. https://doi.org/10.1055/s-0035-1560974

    Article  CAS  Google Scholar 

  34. Imbri D, Tauber J, Opatz T (2013) A high-yielding modular access to the lamellarins: synthesis of lamellarin G trimethyl ether, lamellarin η and dihydrolamellarin η. Chem Eur J 19:15080–15083. https://doi.org/10.1002/chem.201303563

    Article  CAS  PubMed  Google Scholar 

  35. Mandrekar KS, Kadam HK, Tilve SG (2018) Domino Bischler-Napieralski – Michael reaction and oxidation – new route to coumarin-pyrrole-isoquinoline fused pentacycles. Eur J Org Chem 2018:6665–6670. https://doi.org/10.1002/ejoc.201801244

    Article  CAS  Google Scholar 

  36. Vyasaamudri S, Yang DY (2018) Application of differential reactivity towards synthesis of lamellarin and 8-oxoprotoberberine derivatives: Study of photochemical properties of aryl-substituted benzofuran-8-oxoprotoberberines. Tetrahedron 74:1092–1100. https://doi.org/10.1016/j.tet.2018.01.042

    Article  CAS  Google Scholar 

  37. Voskressensky LG, Borisova TN, Matveeva MD, Khrustalev VN, Aksenov AV, Vartanova AE, Varlamov AV (2016) A novel multi-component approach to the synthesis of pyrrolo[2,1-a] isoquinoline derivatives. RSC Adv 6:74068–74071. https://doi.org/10.1039/C6RA15810B

    Article  CAS  Google Scholar 

  38. Voskressensky LG, Borisova TN, Matveeva MD, Khrustalev VN, Titov AA, Aksenov AV, Dyachenko SV, Varlamov AV (2017) A facile synthesis of 1-oxo-pyrrolo[2,1-a]isoquinolines. Tetrahedron Lett 58:877–879. https://doi.org/10.1016/j.tetlet.2017.01.061

    Article  CAS  Google Scholar 

  39. Matveeva MD, Borisova TN, Titov AA, Anikina LV, Dyachenko SV, Astakhov GS, Varlamov AV, Voskressensky LG (2017) Domino reactions of 1-aroyl-3,4-dihydroisoquinolines with α, β-unsaturated aldehydes. Synthesis 49:5251–5257. https://doi.org/10.1055/s-0036-1588486

    Article  CAS  Google Scholar 

  40. Matveeva M, Golovanov A, Borisova T, Titov A, Varlamov A, Shaabani A, Obydennik A, Voskressensky L (2018) Domino reactions of vinyl ethynyl ketones with 1-aryl-3,4-dihydroisoquinolines — Search for selectivity. Mol Cat 461:67–72. https://doi.org/10.1016/j.mcat.2018.09.020

    Article  CAS  Google Scholar 

  41. Cho SD, Kweon DH, Kang YJ, Lee SGm Lee WS, Yoon YJ, (1999) Synthesis of 6,7-dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoquinolines. J Heterocycl Chem 36:1151–1156. https://doi.org/10.1002/jhet.5570360507

    Article  CAS  Google Scholar 

  42. Awuah E, Capretta A (2010) Strategies and synthetic methods directed toward the preparation of libraries of substituted isoquinolines. J Org Chem 75:5627–5634. https://doi.org/10.1021/jo100980p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the «RUDN University Program 5-100». The elemental analysis was performed using the equipment of the Center for Molecular Composition Studies at the INEOS RAS under support of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. Matveeva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, G.S., Shigaev, R.R., Borisova, T.N. et al. Facile synthesis of pyrrolo[2,1-a]isoquinolines by domino reaction of 1-aroyl-3,4-dihydroisoquinolines with conjugated ketones, nitroalkenes and nitriles. Mol Divers 25, 2441–2446 (2021). https://doi.org/10.1007/s11030-020-10146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10146-7

Keywords

Navigation