Skip to main content
Log in

Application of nitrogen-rich porous organic polymer for the solid-phase synthesis of 2-amino-4H-benzo[b]pyran scaffolds using ball milling process

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This paper presents the efficient synthesis of 2-amino-4H-benzo[b]pyrans using mesoporous poly-melamine-formaldehyde as a polymeric heterogeneous catalyst. According to the principals of green chemistry, the reaction was performed by the planetary ball milling process at ambient and neat conditions. The heterogeneous catalyst could be reused up to five runs with no reducing of catalytic efficiency. A variety of substituted 2-amino-4H-benzo[b]pyrans were obtained in good to excellent yields under eco-friendly conditions. Other advantages of the current methodology include short reaction time, wide substrate-scope, and use of a metal-free polymeric catalyst. Also, the current method avoids the use of hazardous reagents and solvents, tedious workup and multi-step purification. This work revealed that porous organic polymers containing Lewis base sites having acceptor-donner hydrogen bonding functional groups, and high porosity could play a vital role in the promotion of the one-pot multicomponent reactions in the solid-phase synthesis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Similar content being viewed by others

References

  1. Tanaka K, Toka F (2000) Chem Rev 100:1025

    CAS  PubMed  Google Scholar 

  2. Wenda S, Illner S, Mell A, Kragl U (2011) Green Chem 13:3007

    CAS  Google Scholar 

  3. Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Chem Rev 109:4140

    CAS  PubMed  Google Scholar 

  4. Wang G-W (2013) Chem Soc Rev 42:7668

    CAS  PubMed  Google Scholar 

  5. Zhu SE, Li F, Wang G-W (2013) Chem Soc Rev 42:7535

    CAS  PubMed  Google Scholar 

  6. Do J-L, Friščić T (2017) ACS Cent Sci 3:13

    CAS  PubMed  Google Scholar 

  7. Leonardi M, Villacampa M, Men´endez JC (2018) Chem Sci 9:2042

    CAS  PubMed  PubMed Central  Google Scholar 

  8. M’hamed MO (2015) Synthetic Commun 45:2511

    Google Scholar 

  9. Khaligh NG, Abbo HS, Titinchi SJJ (2017) Res Chem Intermed 43:901

    CAS  Google Scholar 

  10. Khaligh NG, Ling OC, Mihankhah T, Johan MR, Ching JJ (2018) Aust J Chem 2:194

    Google Scholar 

  11. Khaligh NG, Mihankhah T, Johan MR (2019) Polycycl Arom Comp. https://doi.org/10.1080/10406638.2018.1564679

    Article  Google Scholar 

  12. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščic T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Chem Soc Rev 41:413

    CAS  PubMed  Google Scholar 

  13. Zhang G, Zhang Y, Yan J, Chen R, Wang S, Ma Y, Wang R (2012) J Org Chem 77:878

    CAS  PubMed  Google Scholar 

  14. Skommer J, Wlodkowic D, Mvttc M, Eray M, Pelkonen J (2006) Leukemia Res. 30:322

    CAS  Google Scholar 

  15. Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L, Liu S, Sambandam A, Snider PA, Masih L (2005) Bioorg Med Chem Lett 15:1587

    CAS  PubMed  Google Scholar 

  16. Kemnitzer W, Kasibhatla S, Jiang S, Zhang H, Zhao J, Jia S, Xu L, Crogan-Grundy C, Denis R, Barriault N, Vaillancourt L, Charron S, Dodd J, Attardo G, Labrecque D, Lamothe S, Gourdeau H, Tseng B, Drewe J, Cai SX (2005) Bioorg Med Chem Lett 15:4745

    CAS  PubMed  Google Scholar 

  17. Gourdeau H, Leblond L, Hamelin B, Desputeau C, Dong K, Kianicka I, Custeau D, Bourdeau C, Geerts L, Cai SX, Drewe J, Labrecque D, Kasibhatla S, Tseng B (2004) Mol Cancer Ther 3:1375

    CAS  PubMed  Google Scholar 

  18. Kasibhatla S, Gourdeau H, Meerovitch K, Drewe J, Reddy S, Qiu L, Zhang H, Bergeron F, Bouffard D, Yang Q, Herich J, Lamothe S, Cai SX, Tseng B (2004) Mol Cancer Ther 3:1365

    CAS  PubMed  Google Scholar 

  19. Kemnitzer W, Drewe J, Jiang S, Zhang H, Wang Y, Zhao J, Jia S, Herich J, Labreque D, Storer R, Meerovitch K, Bouffard D, Rej R, Denis R, Blais C, Lamothe S, Attardo G, Gourdeau H, Tseng B, Kasibhatla S, Cai SX (2004) J Med Chem 47:6299

    CAS  PubMed  Google Scholar 

  20. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Proc Natl Acad Sci USA 97:7124

    CAS  PubMed  Google Scholar 

  21. Safaei HR, Shekouhy M, Shirinfeshan A, Rahmanpur S (2012) Mol. Divers. 16:669

    CAS  PubMed  Google Scholar 

  22. Maco JL, Martin N, Grau AM, Seoane C, Albert A, Cano FH (1994) Tetrahedron 50:3509

    Google Scholar 

  23. Martin N, Martin G, Secoane AC, Marco JL, Albert A, Cano FH (1993) Liebigs Ann Chem 7:801

    Google Scholar 

  24. Gu Y (2012) Green Chem 14:2091

    CAS  Google Scholar 

  25. Guo RY, An ZM, Mo LP, Wang RZ, Liu HX, Wang SX, Zhang ZH (2013) ACS Comb Sci. 15:557

    CAS  PubMed  Google Scholar 

  26. Brahmachari G, Banerjee B, Sustain ACS (2014) Chem Eng 2:411

    CAS  Google Scholar 

  27. Hazeri N, Maghsoodlou MT, Mir F, Kangani M, Saravani H, Molashahi E (2014) Chin J Catal 35:391

    CAS  Google Scholar 

  28. Gurumurthi S, Sundari V, Valliappan R (2009) J Chem 6:S466–S472

    CAS  Google Scholar 

  29. Dekamin MG, Eslami M, Maleki A (2013) Tetrahedron 69:1074

    CAS  Google Scholar 

  30. Qareaghaj OH, Mashkouri S, Naimi-Jamal MR, Kaupp G (2014) RSC Adv. 4:48191

    CAS  Google Scholar 

  31. Bahuguna A, Kumar A, Chhabra T, Kumar A, Krishnan V, Appl ACS (2018) Nano Mater. 1:6711

    CAS  Google Scholar 

  32. Muthu T, Anand K, Sureshkumar M, Gengan R (2016) Adv Mater 7:790

    CAS  Google Scholar 

  33. Nongrum R, Nongthombam GS, Kharkongor M, Rahman N, Kathing C, Myrboh B, Nongkhlaw R (2016) RSC Adv. 6:108384

    CAS  Google Scholar 

  34. Azath IA, Puthiaraj P, Pitchumani K (2013) ACS Sustainable Chem. Eng. 1:174

    CAS  Google Scholar 

  35. Wang LM, Shao JH, Tian H, Wang YH, Liu B (2006) J Fluorine Chem 127:97

    CAS  Google Scholar 

  36. Shirini F, Langarudi MSN, Daneshvar N (2017) J Mol Liq 234:268

    CAS  Google Scholar 

  37. Bhagat DS, Wawre JL, Yadav AR, Pathare PG, Kotai L, Pawar RP (2017) Eur Chem Bull 6:211

    CAS  Google Scholar 

  38. Safaci HR, Shokouhy M, Rahmanpur S, Shirinfeshan A (2012) Green Chem 14:1696

    Google Scholar 

  39. Mohammadi AA, Asghariganjeh MR, Hadadzahmatkesh A (2017) Arabian J Chem 10:S2213

    CAS  Google Scholar 

  40. Ren Y, Zhang W, Lu J, Gao K, Liao X, Chen X (2015) RSC Adv. 5:79405

    CAS  Google Scholar 

  41. Kalla RMN, Varyambath A, Kim MR, Kim I (2017) Appl Catal A Gen 538:9

    CAS  Google Scholar 

  42. Kalbasi RJ, Mosaddegh N (2011) Catal Commun 12:1231

    CAS  Google Scholar 

  43. Khaksar S, Rouhollahpour A, Talesh SM (2012) J Fluorine Chem 141:11

    CAS  Google Scholar 

  44. Alizadeh A, Khodaei MM, Beygzadeh M, Kordestani D, Feyzi M (2012) Bull Korean Chem Soc 33:2546

    CAS  Google Scholar 

  45. Bhattacharyya P, Pradhan K, Paul S, Das AR (2012) Tetrahedron Lett 53:4687

    CAS  Google Scholar 

  46. Gao S, Tsai CH, Tseng C, Yao CF (2008) Tetrahedron 64:9143

    CAS  Google Scholar 

  47. Lu CW, Wang JJ, Li F, Yu SJ, An Y (2018) Res Chem Intermed 44:1035

    CAS  Google Scholar 

  48. Azizi N, Dezfooli S, Khajeh M, Hashemi MM (2013) J Mol Liq 186:76

    CAS  Google Scholar 

  49. Mozafari R, Heidarizadeh F (2019) Polyhedron 162:263

    CAS  Google Scholar 

  50. Mohammadi P, Sheibani H (2019) Mater Chem Phys 228:140

    CAS  Google Scholar 

  51. Yang J, Liu S, Hu H, Ren S, Ying A (2015) Chin J Chem Eng 23:1416

    CAS  Google Scholar 

  52. Dekamin MG, Eslami M (2014) Green Chem 16:4914

    CAS  Google Scholar 

  53. Singh P, Yadav P, Mishra A, Awasthi SK (2020) Green and mechanochemical one-pot multicomponent synthesis of bioactive 2-amino-4H-benzo[b]pyrans via highly efficient amine functionalized SiO2@Fe3O4 nanoparticles. ACS Omega 5:4223

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Xie Y, Zhang Y, Tang S, Guo C, Wu J, Lau R (2016) Chem Eng Res Des 114:258

    CAS  Google Scholar 

  55. Zhang S, Yang Q, Zhou X, Li Z, Wang W, Zang X, Wang C, Shiddiky MJA, Murugulla AC, Nguyen NM, Wang Z, Yamauchi Y (2019) Analyst 144:342

    CAS  Google Scholar 

  56. Tan MX, Zhang Y, Ying JY (2013) Chemsuschem 6:1186

    CAS  PubMed  Google Scholar 

  57. Tan MX, Sum YN, Ying JY, Zhang Y (2013) Energy Environ Sci 6:3254

    CAS  Google Scholar 

  58. Zhang W, Qiua LG, Yuan YP, Xie AJ, Shen YH, Zhu JF (2012) J Hazard Mater 221–222:147

    PubMed  Google Scholar 

  59. Ansari MB, Jeong EY, Park SE (2012) Green Sustain Chem 2:1

    CAS  Google Scholar 

  60. Tan MX, Gu L, Li N, Ying JY, Zhang Y (2013) Green Chem 15:1127

    CAS  Google Scholar 

  61. Shunmughanathan M, Puthiaraj P, Pitchumani K (2015) Chem Cat Chem 7:666

    CAS  Google Scholar 

  62. Yang D, Liu P, Zhang N, Wei W, Yue M, You J, Wang H (2014) Chem Cat Chem 6:3434

    CAS  Google Scholar 

  63. Khaligh NG, Ling OC, Mihankhah T, Johan MR, Ching JJ (2019) Monatsh Chem 150:655

    CAS  Google Scholar 

  64. Khaligh NG, Mihankhah T, Johan MR (2019) J Mol Liq 277:794

    CAS  Google Scholar 

  65. Yang G, Han H, Du C, Luo Z, Wang Y (2010) Polymer 51:6193

    CAS  Google Scholar 

  66. Ramesh R, Vadivel P, Maheswari S, Lalitha A (2016) Res Chem Intermed 42:7625

    CAS  Google Scholar 

  67. Ashton PR, Koniger R, Stoddart JF (1996) Amino acid derivatives of β-cyclodextrin. J Org Chem 61:903

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a High Impact Research Grant (NANOCAT RU001-2019) for Scientific Research from University of Malaya, Malaysia. The author is grateful to staff members in the Analytical and Testing Center of Nanotechnology & Catalysis Research Center, University of Malaya for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Ghaffari Khaligh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharani, L., Khaligh, N.G., Mihankhah, T. et al. Application of nitrogen-rich porous organic polymer for the solid-phase synthesis of 2-amino-4H-benzo[b]pyran scaffolds using ball milling process. Mol Divers 25, 323–332 (2021). https://doi.org/10.1007/s11030-020-10092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10092-4

Keywords

Navigation